BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36477901)

  • 21. Promiscuous restriction is a cellular defense strategy that confers fitness advantage to bacteria.
    Vasu K; Nagamalleswari E; Nagaraja V
    Proc Natl Acad Sci U S A; 2012 May; 109(20):E1287-93. PubMed ID: 22509013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Restriction endonuclease cleavage of phage DNA enables resuscitation from Cas13-induced bacterial dormancy.
    Williams MC; Reker AE; Margolis SR; Liao J; Wiedmann M; Rojas ER; Meeske AJ
    Nat Microbiol; 2023 Mar; 8(3):400-409. PubMed ID: 36782027
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA Methylation by Restriction Modification Systems Affects the Global Transcriptome Profile in Borrelia burgdorferi.
    Casselli T; Tourand Y; Scheidegger A; Arnold WK; Proulx A; Stevenson B; Brissette CA
    J Bacteriol; 2018 Dec; 200(24):. PubMed ID: 30249703
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Esp1396I restriction-modification system: structural organization and mode of regulation.
    Cesnaviciene E; Mitkaite G; Stankevicius K; Janulaitis A; Lubys A
    Nucleic Acids Res; 2003 Jan; 31(2):743-9. PubMed ID: 12527784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cofactor analogue-induced chemical reactivation of endonuclease activity in a DNA cleavage/methylation deficient TspGWI N₄₇₃A variant in the NPPY motif.
    Zylicz-Stachula A; Jeżewska-Frąckowiak J; Skowron PM
    Mol Biol Rep; 2014; 41(4):2313-23. PubMed ID: 24442320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cloning and expression of Bacillus subtilis phage DNA methyltransferase genes in Escherichia coli and B. subtilis.
    Günthert U; Reiners L; Lauster R
    Gene; 1986; 41(2-3):261-70. PubMed ID: 3011599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Translational independence between overlapping genes for a restriction endonuclease and its transcriptional regulator.
    Kaw MK; Blumenthal RM
    BMC Mol Biol; 2010 Nov; 11():87. PubMed ID: 21092102
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Restriction-Modification Systems as a Barrier for Genetic Manipulation of Staphylococcus aureus.
    Sadykov MR
    Methods Mol Biol; 2016; 1373():9-23. PubMed ID: 25646604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Novel Tool for Microbial Genome Editing Using the Restriction-Modification System.
    Bai H; Deng A; Liu S; Cui D; Qiu Q; Wang L; Yang Z; Wu J; Shang X; Zhang Y; Wen T
    ACS Synth Biol; 2018 Jan; 7(1):98-106. PubMed ID: 28968490
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacterial Autoimmunity Due to a Restriction-Modification System.
    Pleška M; Qian L; Okura R; Bergmiller T; Wakamoto Y; Kussell E; Guet CC
    Curr Biol; 2016 Feb; 26(3):404-9. PubMed ID: 26804559
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-level expression of the Type II restriction-modification system confers potent bacteriophage resistance in Escherichia coli.
    Wilkowska K; Mruk I; Furmanek-Blaszk B; Sektas M
    DNA Res; 2020 Feb; 27(1):. PubMed ID: 32167561
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmid-encoded antirestriction protein ArdA can discriminate between type I methyltransferase and complete restriction-modification system.
    Nekrasov SV; Agafonova OV; Belogurova NG; Delver EP; Belogurov AA
    J Mol Biol; 2007 Jan; 365(2):284-97. PubMed ID: 17069852
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Hyperthermophilic Restriction-Modification Systems of
    Zatopek KM; Burkhart BW; Morgan RD; Gehring AM; Scott KA; Santangelo TJ; Gardner AF
    Front Microbiol; 2021; 12():657356. PubMed ID: 34093470
    [No Abstract]   [Full Text] [Related]  

  • 34. Horizontal gene transfer contributes to the wide distribution and evolution of type II restriction-modification systems.
    Jeltsch A; Pingoud A
    J Mol Evol; 1996 Feb; 42(2):91-6. PubMed ID: 8919860
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence.
    Murphy J; Mahony J; Ainsworth S; Nauta A; van Sinderen D
    Appl Environ Microbiol; 2013 Dec; 79(24):7547-55. PubMed ID: 24123737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methyltransferases acquired by lactococcal 936-type phage provide protection against restriction endonuclease activity.
    Murphy J; Klumpp J; Mahony J; O'Connell-Motherway M; Nauta A; van Sinderen D
    BMC Genomics; 2014 Oct; 15(1):831. PubMed ID: 25269955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of Restriction-Modification Systems Consisting of One Restriction Endonuclease and Two DNA Methyltransferases.
    Fokina AS; Karyagina AS; Rusinov IS; Moshensky DM; Spirin SA; Alexeevski AV
    Biochemistry (Mosc); 2023 Feb; 88(2):253-261. PubMed ID: 37072330
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Novel Bacteriophage Exclusion (BREX) System Encoded by the
    Hui W; Zhang W; Kwok LY; Zhang H; Kong J; Sun T
    Appl Environ Microbiol; 2019 Oct; 85(20):. PubMed ID: 31399407
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel m4C modification in type I restriction-modification systems.
    Morgan RD; Luyten YA; Johnson SA; Clough EM; Clark TA; Roberts RJ
    Nucleic Acids Res; 2016 Nov; 44(19):9413-9425. PubMed ID: 27580720
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-stage gene assembly/cloning of a member of the TspDTI subfamily of bifunctional restriction endonucleases, TthHB27I.
    Krefft D; Zylicz-Stachula A; Mulkiewicz E; Papkov A; Jezewska-Frackowiak J; Skowron PM
    J Biotechnol; 2015 Jan; 194():67-80. PubMed ID: 25486633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.