BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36478047)

  • 1. Hierarchical DNA branch assembly-encoded fluorescent nanoladders for single-cell transcripts imaging.
    Cao X; Chen F; Xue J; Zhao Y; Bai M; Zhao Y
    Nucleic Acids Res; 2023 Feb; 51(3):e13. PubMed ID: 36478047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amplified and multiplexed detection of DNA using the dendritic rolling circle amplified synthesis of DNAzyme reporter units.
    Wang F; Lu CH; Liu X; Freage L; Willner I
    Anal Chem; 2014 Feb; 86(3):1614-21. PubMed ID: 24377284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lighting Up Nucleic Acid Modifications in Single Cells with DNA-Encoded Amplification.
    Chen F; Xue J; Bai M; Fan C; Zhao Y
    Acc Chem Res; 2022 Aug; 55(16):2248-2259. PubMed ID: 35904502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic hairpin assembly-based double-end DNAzyme cascade-feedback amplification for sensitive fluorescence detection of HIV-1 DNA.
    Liu X; Zhou X; Xia X; Xiang H
    Anal Chim Acta; 2020 Feb; 1096():159-165. PubMed ID: 31883582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNAzyme-Based Target-Triggered Rolling-Circle Amplification for High Sensitivity Detection of microRNAs.
    Liu C; Han J; Zhou L; Zhang J; Du J
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32260285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A DNAzyme Feedback Amplification Strategy for Biosensing.
    Liu M; Zhang Q; Chang D; Gu J; Brennan JD; Li Y
    Angew Chem Int Ed Engl; 2017 May; 56(22):6142-6146. PubMed ID: 28370773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNAzyme Feedback Amplification: Relaying Molecular Recognition to Exponential DNA Amplification.
    Liu M; Yin Q; McConnell EM; Chang Y; Brennan JD; Li Y
    Chemistry; 2018 Mar; 24(18):4473-4479. PubMed ID: 29240289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-ion-induced DNAzyme on magnetic beads for detection of lead(II) by using rolling circle amplification, glucose oxidase, and readout of pH changes.
    Tang D; Xia B; Tang Y; Zhang J; Zhou Q
    Mikrochim Acta; 2019 May; 186(5):318. PubMed ID: 31049691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A DNAzyme-mediated target-initiated rolling circle amplification strategy based on a microchip platform for the detection of apurinic/apyrimidinic endonuclease 1 at the single-cell level.
    Xu C; Chen S; Zhao J; Luo X; Zhao S
    Chem Commun (Camb); 2021 Oct; 57(84):11017-11020. PubMed ID: 34605511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of short repeated genomic sequences on metaphase chromosomes using padlock probes and target primed rolling circle DNA synthesis.
    Lohmann JS; Stougaard M; Koch J
    BMC Mol Biol; 2007 Nov; 8():103. PubMed ID: 17997865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitive detection of DNA methyltransferase using the dendritic rolling circle amplification-induced fluorescence.
    Song W; Luan Y; Guo X; He P; Zhang X
    Anal Chim Acta; 2017 Mar; 956():57-62. PubMed ID: 28093126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery and Biosensing Applications of Diverse RNA-Cleaving DNAzymes.
    Liu M; Chang D; Li Y
    Acc Chem Res; 2017 Sep; 50(9):2273-2283. PubMed ID: 28805376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circular exponential amplification of photoinduced electron transfer using hairpin probes, G-quadruplex DNAzyme and silver nanocluster-labeled DNA for ultrasensitive fluorometric determination of pathogenic bacteria.
    Leng X; Wang Y; Li R; Liu S; Yao J; Pei Q; Cui X; Tu Y; Tang D; Huang J
    Mikrochim Acta; 2018 Feb; 185(3):168. PubMed ID: 29594727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplexed in situ RNA imaging by combFISH.
    Liu Y; Chen J; Lin C; Ke R
    Anal Bioanal Chem; 2024 Jul; 416(16):3765-3774. PubMed ID: 38775954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single bacteria detection by droplet DNAzyme-coupled rolling circle amplification.
    Chi Y; Shi M; Wu Y; Wu Y; Chang Y; Liu M
    Anal Methods; 2022 Jun; 14(23):2244-2248. PubMed ID: 35611869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dynamic, ultra-sensitive and "turn-on" strategy for fluorescent detection of uranyl based on DNAzyme and entropy-driven amplification initiated circular cleavage amplification.
    Yun W; Wu H; Yang Z; Wang R; Wang C; Yang L; Tang Y
    Anal Chim Acta; 2019 Aug; 1068():104-110. PubMed ID: 31072470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive and selective chemiluminescent imaging for DNA detection by ligation-mediated rolling circle amplified synthesis of DNAzyme.
    Dong H; Wang C; Xiong Y; Lu H; Ju H; Zhang X
    Biosens Bioelectron; 2013 Mar; 41():348-53. PubMed ID: 22981413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-Primed Amplification for Noise-Suppressed Visualization of Single-Cell Splice Variants.
    Cao X; Yu H; Xue J; Bai M; Zhao Y; Li Y; Zhao Y; Chen F
    Anal Chem; 2020 Jul; 92(13):9356-9361. PubMed ID: 32456418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rolling circle amplification-based DNA machine for miRNA screening coupling catalytic hairpin assembly with DNAzyme formation.
    Zhuang J; Lai W; Chen G; Tang D
    Chem Commun (Camb); 2014 Mar; 50(22):2935-8. PubMed ID: 24501741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attomole DNA detection assay via rolling circle amplification and single molecule detection.
    Schopf E; Chen Y
    Anal Biochem; 2010 Feb; 397(1):115-7. PubMed ID: 19761749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.