These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36478110)

  • 41. A benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system.
    Lin L; Huang S; Kang M; Hiltunen P; Vanderstraeten R; Lindberg J; Siljamaki S; Wareing T; Davis I; Barnett A; McGhee J; Simone CB; Solberg TD; McDonough JE; Ainsley C
    J Appl Clin Med Phys; 2017 Mar; 18(2):44-49. PubMed ID: 28300385
    [TBL] [Abstract][Full Text] [Related]  

  • 42. ANALYTICAL MODEL TO ESTIMATE EQUIVALENT DOSE FROM INTERNAL NEUTRONS IN PROTON THERAPY OF CHILDREN WITH INTRACRANIAL TUMORS.
    Gallagher KJ; Taddei PJ
    Radiat Prot Dosimetry; 2019 Jun; 183(4):459-467. PubMed ID: 30272222
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Geometrical splitting technique to improve the computational efficiency in Monte Carlo calculations for proton therapy.
    Ramos-Méndez J; Perl J; Faddegon B; Schümann J; Paganetti H
    Med Phys; 2013 Apr; 40(4):041718. PubMed ID: 23556888
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system.
    Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W
    Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Are neutrons responsible for the dose discrepancies between Monte Carlo calculations and measurements in the build-up region for a high-energy photon beam?
    Ding GX; Duzenli C; Kalach NI
    Phys Med Biol; 2002 Sep; 47(17):3251-61. PubMed ID: 12361221
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A framework for implementation of organ effect models in TOPAS with benchmarks extended to proton therapy.
    Ramos-Méndez J; Perl J; Schümann J; Shin J; Paganetti H; Faddegon B
    Phys Med Biol; 2015 Jul; 60(13):5037-52. PubMed ID: 26061583
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessment of out-of-field absorbed dose and equivalent dose in proton fields.
    Clasie B; Wroe A; Kooy H; Depauw N; Flanz J; Paganetti H; Rosenfeld A
    Med Phys; 2010 Jan; 37(1):311-21. PubMed ID: 20175494
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bremsstrahlung and photoneutron production in a steel shield for 15-22-MeV clinical electron beams.
    Fujita Y; Myojoyama A; Saitoh H
    Radiat Prot Dosimetry; 2015 Feb; 163(2):148-59. PubMed ID: 24821930
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Monte Carlo study on the secondary cancer risk estimations for patients undergoing prostate radiotherapy: A humanoid phantom study.
    Ghasemi-Jangjoo A; Ghiasi H
    Rep Pract Oncol Radiother; 2020; 25(2):187-192. PubMed ID: 32021575
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A SHORTCUT FORMULA FOR THE 230-MeV PROTON-INDUCED NEUTRON DOSE EQUIVALENT IN CONCRETE AFTER A METAL SHIELD, DERIVED FROM MONTE CARLO SIMULATIONS WITH MCNPX.
    Taal A; van der Kooij A; Okx WJ
    Radiat Prot Dosimetry; 2016 Nov; 171(3):326-336. PubMed ID: 26374914
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Validation of a GPU-based Monte Carlo code (gPMC) for proton radiation therapy: clinical cases study.
    Giantsoudi D; Schuemann J; Jia X; Dowdell S; Jiang S; Paganetti H
    Phys Med Biol; 2015 Mar; 60(6):2257-69. PubMed ID: 25715661
    [TBL] [Abstract][Full Text] [Related]  

  • 52. GPU-based fast Monte Carlo dose calculation for proton therapy.
    Jia X; Schümann J; Paganetti H; Jiang SB
    Phys Med Biol; 2012 Dec; 57(23):7783-97. PubMed ID: 23128424
    [TBL] [Abstract][Full Text] [Related]  

  • 53. PRELIMINARY STUDY OF NEUTRON FIELD IN TOP-IMPLART PROTON THERAPY BEAM.
    Ferrari P; Vadrucci M; Ampollini A; Campani L; Picardi L; Ronsivalle C; Mariotti F
    Radiat Prot Dosimetry; 2018 Aug; 180(1-4):360-364. PubMed ID: 29053837
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A scintillator-based approach to monitor secondary neutron production during proton therapy.
    Clarke SD; Pryser E; Wieger BM; Pozzi SA; Haelg RA; Bashkirov VA; Schulte RW
    Med Phys; 2016 Nov; 43(11):5915. PubMed ID: 27806590
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of GATE-RTion (GATE/Geant4) Monte Carlo simulation settings for proton pencil beam scanning quality assurance.
    Winterhalter C; Taylor M; Boersma D; Elia A; Guatelli S; Mackay R; Kirkby K; Maigne L; Ivanchenko V; Resch AF; Sarrut D; Sitch P; Vidal M; Grevillot L; Aitkenhead A
    Med Phys; 2020 Nov; 47(11):5817-5828. PubMed ID: 32967037
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Secondary neutron doses in proton therapy treatments of ocular melanoma and craniopharyngioma.
    Farah J; Sayah R; Martinetti F; Donadille L; Lacoste V; Hérault J; Delacroix S; Nauraye C; Vabre I; Lee C; Bolch WE; Clairand I
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):363-7. PubMed ID: 24222710
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MEASUREMENT OF NEUTRON AMBIENT DOSE EQUIVALENT IN PROTON RADIOTHERAPY WITH LINE-SCANNING AND WOBBLING MODE TREATMENT SYSTEM.
    Lee S; Lee C; Shin EH; Cho S; Kim DH; Han Y; Choi DH; Ye SJ; Kim JS
    Radiat Prot Dosimetry; 2017 Dec; 177(4):382-388. PubMed ID: 28444374
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DETERMINATION OF THE NEUTRON CONTAMINATION DURING BRAIN RADIOTHERAPY USING A MODERATED-BORON TRIFLUORIDE DETECTOR AND THE MCNP MONTE CARLO CODE.
    Elmtalab S; Shanei A; Choopan Dastjerdi MH; Brkić H; Abedi I; Amouheidari A
    Radiat Prot Dosimetry; 2022 Mar; 198(3):129-138. PubMed ID: 35137234
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analytical shielding calculations for a proton therapy facility.
    Avery S; Ainsley C; Maughan R; McDonough J
    Radiat Prot Dosimetry; 2008; 131(2):167-79. PubMed ID: 18487617
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development and validation of the Dynamic Collimation Monte Carlo simulation package for pencil beam scanning proton therapy.
    Nelson NP; Culberson WS; Hyer DE; Geoghegan TJ; Patwardhan KA; Smith BR; Flynn RT; Yu J; Rana S; Gutiérrez AN; Hill PM
    Med Phys; 2021 Jun; 48(6):3172-3185. PubMed ID: 33740253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.