These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36478203)

  • 1. bmVAE: a variational autoencoder method for clustering single-cell mutation data.
    Yan J; Ma M; Yu Z
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36478203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dhaka: variational autoencoder for unmasking tumor heterogeneity from single cell genomic data.
    Rashid S; Shah S; Bar-Joseph Z; Pandya R
    Bioinformatics; 2021 Jul; 37(11):1535-1543. PubMed ID: 30768159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scGAL: unmask tumor clonal substructure by jointly analyzing independent single-cell copy number and scRNA-seq data.
    Li R; Shi F; Song L; Yu Z
    BMC Genomics; 2024 Apr; 25(1):393. PubMed ID: 38649804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. rcCAE: a convolutional autoencoder method for detecting intra-tumor heterogeneity and single-cell copy number alterations.
    Yu Z; Liu F; Shi F; Du F
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 36961311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AMC: accurate mutation clustering from single-cell DNA sequencing data.
    Yu Z; Du F
    Bioinformatics; 2022 Mar; 38(6):1732-1734. PubMed ID: 34951625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BnpC: Bayesian non-parametric clustering of single-cell mutation profiles.
    Borgsmüller N; Bonet J; Marass F; Gonzalez-Perez A; Lopez-Bigas N; Beerenwinkel N
    Bioinformatics; 2020 Dec; 36(19):4854-4859. PubMed ID: 32592465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring single-cell copy number profiles through cross-cell segmentation of read counts.
    Liu F; Shi F; Yu Z
    BMC Genomics; 2024 Jan; 25(1):25. PubMed ID: 38166601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scGAC: a graph attentional architecture for clustering single-cell RNA-seq data.
    Cheng Y; Ma X
    Bioinformatics; 2022 Apr; 38(8):2187-2193. PubMed ID: 35176138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting clone genotypes from tumor bulk sequencing of multiple samples.
    Miura S; Gomez K; Murillo O; Huuki LA; Vu T; Buturla T; Kumar S
    Bioinformatics; 2018 Dec; 34(23):4017-4026. PubMed ID: 29931046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CopyVAE: a variational autoencoder-based approach for copy number variation inference using single-cell transcriptomics.
    Kurt S; Chen M; Toosi H; Chen X; Engblom C; Mold J; Hartman J; Lagergren J
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38676578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oncotree2vec - a method for embedding and clustering of tumor mutation trees.
    Baciu-Drăgan MA; Beerenwinkel N
    Bioinformatics; 2024 Jun; 40(Supplement_1):i180-i188. PubMed ID: 38940124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phitest for analyzing the homogeneity of single-cell populations.
    Li WV
    Bioinformatics; 2022 Apr; 38(9):2639-2641. PubMed ID: 35238346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data.
    Wan H; Chen L; Deng M
    Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RVAgene: generative modeling of gene expression time series data.
    Mitra R; MacLean AL
    Bioinformatics; 2021 Oct; 37(19):3252-3262. PubMed ID: 33974008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferring cancer progression from Single-Cell Sequencing while allowing mutation losses.
    Ciccolella S; Ricketts C; Soto Gomez M; Patterson M; Silverbush D; Bonizzoni P; Hajirasouliha I; Della Vedova G
    Bioinformatics; 2021 Apr; 37(3):326-333. PubMed ID: 32805010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QuantumClone: clonal assessment of functional mutations in cancer based on a genotype-aware method for clonal reconstruction.
    Deveau P; Colmet Daage L; Oldridge D; Bernard V; Bellini A; Chicard M; Clement N; Lapouble E; Combaret V; Boland A; Meyer V; Deleuze JF; Janoueix-Lerosey I; Barillot E; Delattre O; Maris JM; Schleiermacher G; Boeva V
    Bioinformatics; 2018 Jun; 34(11):1808-1816. PubMed ID: 29342233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovering novel mutation signatures by latent Dirichlet allocation with variational Bayes inference.
    Matsutani T; Ueno Y; Fukunaga T; Hamada M
    Bioinformatics; 2019 Nov; 35(22):4543-4552. PubMed ID: 30993319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bayesian method to cluster single-cell RNA sequencing data using copy number alterations.
    Milite S; Bergamin R; Patruno L; Calonaci N; Caravagna G
    Bioinformatics; 2022 Apr; 38(9):2512-2518. PubMed ID: 35298589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ACTIVA: realistic single-cell RNA-seq generation with automatic cell-type identification using introspective variational autoencoders.
    Heydari AA; Davalos OA; Zhao L; Hoyer KK; Sindi SS
    Bioinformatics; 2022 Apr; 38(8):2194-2201. PubMed ID: 35179571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.