These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36478220)

  • 1. Differences in brain functional networks for audiovisual integration during reading between children and adults.
    Li J; Yang Y; Viñas-Guasch N; Yang Y; Bi HY
    Ann N Y Acad Sci; 2023 Feb; 1520(1):127-139. PubMed ID: 36478220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural initialization of audiovisual integration in prereaders at varying risk for developmental dyslexia.
    I Karipidis I; Pleisch G; Röthlisberger M; Hofstetter C; Dornbierer D; Stämpfli P; Brem S
    Hum Brain Mapp; 2017 Feb; 38(2):1038-1055. PubMed ID: 27739608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental Trajectories of Letter and Speech Sound Integration During Reading Acquisition.
    Karipidis II; Pleisch G; Di Pietro SV; Fraga-González G; Brem S
    Front Psychol; 2021; 12():750491. PubMed ID: 34867636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Print-Speech Integration in the Brain of Beginning Readers With Varying Reading Skills.
    Wang F; Karipidis II; Pleisch G; Fraga-González G; Brem S
    Front Hum Neurosci; 2020; 14():289. PubMed ID: 32922271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre-reading language abilities and the brain's functional reading network in young children.
    Benischek A; Long X; Rohr CS; Bray S; Dewey D; Lebel C
    Neuroimage; 2020 Aug; 217():116903. PubMed ID: 32389725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurofunctional basis underlying audiovisual integration of print and speech sound in Chinese children.
    Xia Z; Yang T; Cui X; Hoeft F; Liu H; Zhang X; Shu H; Liu X
    Eur J Neurosci; 2022 Feb; 55(3):806-826. PubMed ID: 35032071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. fMR-adaptation indicates selectivity to audiovisual content congruency in distributed clusters in human superior temporal cortex.
    van Atteveldt NM; Blau VC; Blomert L; Goebel R
    BMC Neurosci; 2010 Feb; 11():11. PubMed ID: 20122260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deviant processing of letters and speech sounds as proximate cause of reading failure: a functional magnetic resonance imaging study of dyslexic children.
    Blau V; Reithler J; van Atteveldt N; Seitz J; Gerretsen P; Goebel R; Blomert L
    Brain; 2010 Mar; 133(Pt 3):868-79. PubMed ID: 20061325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Audiovisual speech integration in the superior temporal region is dysfunctional in dyslexia.
    Ye Z; Rüsseler J; Gerth I; Münte TF
    Neuroscience; 2017 Jul; 356():1-10. PubMed ID: 28527953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skill dependent audiovisual integration in the fusiform induces repetition suppression.
    McNorgan C; Booth JR
    Brain Lang; 2015 Feb; 141():110-23. PubMed ID: 25585276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical network underlying audiovisual semantic integration and modulation of attention: An fMRI and graph-based study.
    Xi Y; Li Q; Gao N; He S; Tang X
    PLoS One; 2019; 14(8):e0221185. PubMed ID: 31442242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Top-down attention regulates the neural expression of audiovisual integration.
    Morís Fernández L; Visser M; Ventura-Campos N; Ávila C; Soto-Faraco S
    Neuroimage; 2015 Oct; 119():272-85. PubMed ID: 26119022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orthographic dependency in the neural correlates of reading: evidence from audiovisual integration in English readers.
    Holloway ID; van Atteveldt N; Blomert L; Ansari D
    Cereb Cortex; 2015 Jun; 25(6):1544-53. PubMed ID: 24351976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural correlates of multisensory integration in the human brain: an ALE meta-analysis.
    Scheliga S; Kellermann T; Lampert A; Rolke R; Spehr M; Habel U
    Rev Neurosci; 2023 Feb; 34(2):223-245. PubMed ID: 36084305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the interaction between the inferior parietal lobule and superior temporal gyrus in the multisensory Go/No-go task.
    Sun J; Huang J; Wang A; Zhang M; Tang X
    Neuroimage; 2022 Jul; 254():119140. PubMed ID: 35342002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examining individual differences in reading and attentional control networks utilizing an oddball fMRI task.
    Arrington CN; Malins JG; Winter R; Mencl WE; Pugh KR; Morris R
    Dev Cogn Neurosci; 2019 Aug; 38():100674. PubMed ID: 31252201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The level of audiovisual print-speech integration deficits in dyslexia.
    Kronschnabel J; Brem S; Maurer U; Brandeis D
    Neuropsychologia; 2014 Sep; 62():245-61. PubMed ID: 25084224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Lifespan fMRI Study of Neurodevelopment Associated with Reading Chinese.
    Siok WT; Jia F; Liu CY; Perfetti CA; Tan LH
    Cereb Cortex; 2020 Jun; 30(7):4140-4157. PubMed ID: 32108219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variations of response time in a selective attention task are linked to variations of functional connectivity in the attentional network.
    Prado J; Carp J; Weissman DH
    Neuroimage; 2011 Jan; 54(1):541-9. PubMed ID: 20728549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reciprocal relations between reading skill and the neural basis of phonological awareness in 7- to 9-year-old children.
    Wang J; Pines J; Joanisse M; Booth JR
    Neuroimage; 2021 Aug; 236():118083. PubMed ID: 33878381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.