These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36478637)

  • 1. In situ Detection of Cobaloxime Intermediates During Photocatalysis Using Hollow-Core Photonic Crystal Fiber Microreactors.
    Lawson T; Gentleman AS; Pinnell J; Eisenschmidt A; Antón-García D; Frosz MH; Reisner E; Euser TG
    Angew Chem Int Ed Engl; 2023 Feb; 62(9):e202214788. PubMed ID: 36478637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optofluidic Photonic Crystal Fiber Microreactors for In Situ Studies of Carbon Nanodot-Driven Photoreduction.
    Koehler P; Lawson T; Neises J; Willkomm J; Martindale BCM; Hutton GAM; Antón-García D; Lage A; Gentleman AS; Frosz MH; Russell PSJ; Reisner E; Euser TG
    Anal Chem; 2021 Jan; 93(2):895-901. PubMed ID: 33315379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hollow core photonic crystal fiber based viscometer with Raman spectroscopy.
    Horan LE; Ruth AA; Gunning FC
    J Chem Phys; 2012 Dec; 137(22):224504. PubMed ID: 23249014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hollow-Core Photonic Crystal Fiber Gas Sensing.
    Yu R; Chen Y; Shui L; Xiao L
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Volume Reaction Monitoring of Carbon Dot Light Absorbers in Optofluidic Microreactors.
    Lawson T; Gentleman AS; Lage A; Casadevall C; Xiao J; Petit T; Frosz MH; Reisner E; Euser TG
    ACS Catal; 2023 Jul; 13(13):9090-9101. PubMed ID: 37441232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microsecond X-ray Absorption Spectroscopy Identification of Co(I) Intermediates in Cobaloxime-Catalyzed Hydrogen Evolution.
    Smolentsev G; Cecconi B; Guda A; Chavarot-Kerlidou M; van Bokhoven JA; Nachtegaal M; Artero V
    Chemistry; 2015 Oct; 21(43):15158-62. PubMed ID: 26388205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photonic nanojet focusing for hollow-core photonic crystal fiber probes.
    Ghenuche P; Rigneault H; Wenger J
    Appl Opt; 2012 Dec; 51(36):8637-40. PubMed ID: 23262605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarization-Tailored Raman Frequency Conversion in Chiral Gas-Filled Hollow-Core Photonic Crystal Fibers.
    Davtyan S; Novoa D; Chen Y; Frosz MH; Russell PSJ
    Phys Rev Lett; 2019 Apr; 122(14):143902. PubMed ID: 31050443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic integration of photonic crystal fibers for online photochemical reaction analysis.
    Unterkofler S; McQuitty RJ; Euser TG; Farrer NJ; Sadler PJ; Russell PS
    Opt Lett; 2012 Jun; 37(11):1952-4. PubMed ID: 22660084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Raman cell based on hollow core photonic crystal fiber for human breath analysis.
    Chow KK; Short M; Lam S; McWilliams A; Zeng H
    Med Phys; 2014 Sep; 41(9):092701. PubMed ID: 25186415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kagome Hollow Core Fiber-Based Mid-Infrared Dispersion Spectroscopy of Methane at Sub-ppm Levels.
    Krzempek K; Abramski K; Nikodem M
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31370141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases.
    Joshi S; Yalin AP; Galvanauskas A
    Appl Opt; 2007 Jul; 46(19):4057-64. PubMed ID: 17571147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of highly sensitive biosensors using hollow-core microstructured fibers for plasma sensing in aids with human metabolism.
    Alam MK; Vadivel K; Natesan A; Sghaireen MG; Ganji KK; Srivastava KC; Nashwan S; Khader Y
    Opt Quantum Electron; 2023; 55(2):188. PubMed ID: 36618531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infiltrated Photonic Crystal Fibers for Sensing Applications.
    Algorri JF; Zografopoulos DC; Tapetado A; Poudereux D; Sánchez-Pena JM
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30518084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photochemistry in photonic crystal fiber nanoreactors.
    Chen JS; Euser TG; Farrer NJ; Sadler PJ; Scharrer M; Russell PS
    Chemistry; 2010 May; 16(19):5607-12. PubMed ID: 20391563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling quasi-phase-matched electric-field-induced optical parametric amplification in hollow-core photonic crystal fibers.
    Courtney TL; Lopez-Zelaya C; Amezcua-Correa R; Keyser CK
    Opt Express; 2021 Apr; 29(8):11962-11975. PubMed ID: 33984966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast Molecular Spectroscopy Using a Hollow-Core Photonic Crystal Fiber Light Source.
    Kotsina N; Belli F; Gao SF; Wang YY; Wang P; Travers JC; Townsend D
    J Phys Chem Lett; 2019 Feb; 10(4):715-720. PubMed ID: 30694062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential high-resolution stimulated CW Raman spectroscopy of hydrogen in a hollow-core fiber.
    Westergaard PG; Lassen M; Petersen JC
    Opt Express; 2015 Jun; 23(12):16320-8. PubMed ID: 26193604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photonic crystal fibre as an optofluidic reactor for the measurement of photochemical kinetics with sub-picomole sensitivity.
    Williams GO; Chen JS; Euser TG; Russell PS; Jones AC
    Lab Chip; 2012 Sep; 12(18):3356-61. PubMed ID: 22767267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noble-metal-free BODIPY-cobaloxime photocatalysts for visible-light-driven hydrogen production.
    Luo GG; Fang K; Wu JH; Dai JC; Zhao QH
    Phys Chem Chem Phys; 2014 Nov; 16(43):23884-94. PubMed ID: 25277723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.