These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 3647911)

  • 1. Acceleration of the rate of processing of 40 S pre-rRNA during Xenopus laevis embryogenesis.
    Shiokawa K; Fu Y; Yamana K
    Dev Biol; 1987 Aug; 122(2):586-8. PubMed ID: 3647911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ammonium ion as a possible regulator of the commencement of rRNA synthesis in Xenopus laevis embryogenesis.
    Shiokawa K; Kawazoe Y; Nomura H; Miura T; Nakakura N; Horiuchi T; Yamana K
    Dev Biol; 1986 Jun; 115(2):380-91. PubMed ID: 3635478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic behavior of 30S rRNA intermediate labeled in developing embryonic cells of Xenopus laevis.
    Shiokawa K; Fu YC
    Cell Struct Funct; 1987 Jun; 12(3):287-94. PubMed ID: 3621362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ribosomal RNA processing machinery is recruited to the nucleolar domain before RNA polymerase I during Xenopus laevis development.
    Verheggen C; Almouzni G; Hernandez-Verdun D
    J Cell Biol; 2000 Apr; 149(2):293-306. PubMed ID: 10769023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. rDNA transcription and pre-rRNA processing during the differentiation of a mouse myoblast cell line.
    Bowman LH
    Dev Biol; 1987 Jan; 119(1):152-63. PubMed ID: 3641762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitor of ribosomal RNA synthesis in Xenopus laevis embryos. VII. Inhibition of 40s pre-rRNA synthesis in Xenopus neurula cells.
    Shiokawa K
    Cell Struct Funct; 1984 Mar; 9(1):97-102. PubMed ID: 6722909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping of the major early endonuclease cleavage site of the rat precursor to rRNA within the internal transcribed spacer sequence of rDNA.
    Hadjiolova KV; Georgiev OI; Nosikov VV; Hadjiolov AA
    Biochim Biophys Acta; 1984 Jun; 782(2):195-201. PubMed ID: 6326837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNase III cleavage is obligate for maturation but not for function of Escherichia coli pre-23S rRNA.
    King TC; Sirdeshmukh R; Schlessinger D
    Proc Natl Acad Sci U S A; 1984 Jan; 81(1):185-8. PubMed ID: 6364133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. U3 small nucleolar RNA is essential for cleavage at sites 1, 2 and 3 in pre-rRNA and determines which rRNA processing pathway is taken in Xenopus oocytes.
    Borovjagin AV; Gerbi SA
    J Mol Biol; 1999 Mar; 286(5):1347-63. PubMed ID: 10064702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of U16 snoRNA in early development of X. laevis.
    Fatica A; Caffarelli E; Beccari E; Bozzoni I
    Biochem Biophys Res Commun; 1997 Dec; 241(2):486-90. PubMed ID: 9425297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 12 S precursor to 5.8 S rRNA associated with rat liver nucleolar 28 S rRNA.
    Dudov KP; Hadjiolova KV; Kermekchiev MB; Stanchev BS; Hadjiolov AA
    Biochim Biophys Acta; 1983 Jan; 739(1):79-84. PubMed ID: 6550497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A transcriptional function for the repetitive ribosomal spacer in Xenopus laevis.
    Moss T
    Nature; 1983 Mar 17-23; 302(5905):223-8. PubMed ID: 6835360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The intervening sequence in the 26S rRNA coding region of T. thermophila is transcribed within the largest stable precursor for rRNA.
    Din N; Engberg J; Kaffenberger W; Eckert WA
    Cell; 1979 Oct; 18(2):525-32. PubMed ID: 498282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial gene expression during Xenopus laevis development: a molecular study.
    el Meziane A; Callen JC; Mounolou JC
    EMBO J; 1989 Jun; 8(6):1649-55. PubMed ID: 2475342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide sequence of the 5'-terminal coding region for pre-rRNA and mature 17S rRNA in Tetrahymena thermophila rDNA.
    Engberg J; Din N; Saiga H; Higashinakagawa T
    Nucleic Acids Res; 1984 Jan; 12(2):959-72. PubMed ID: 6320127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver positivity of the NORs during embryonic development of Xenopus laevis.
    De Capoa A; Pelliccia F; Marlekaj P; Ciofi-Luzzatto AR; Buongiorno Nardelli M
    Exp Cell Res; 1983 Sep; 147(2):472-8. PubMed ID: 6193984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex endonucleolytic cleavage pattern during early events in the processing of pre-rRNA in the lower eukaryote, Tetrahymena thermophila.
    Kister KP; Müller B; Eckert WA
    Nucleic Acids Res; 1983 Jun; 11(11):3487-502. PubMed ID: 6304633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Replacement of maternal 40S rRNA precursor by newly synthesized precursor in early embryos of Xenopus laevis.
    Furuno N; Shiokawa K; Kobayashi H
    Cell Struct Funct; 1988 Apr; 13(2):113-22. PubMed ID: 3383250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleotide sequence determining the first cleavage site in the processing of mouse precursor rRNA.
    Craig N; Kass S; Sollner-Webb B
    Proc Natl Acad Sci U S A; 1987 Feb; 84(3):629-33. PubMed ID: 3027694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific interaction between the self-splicing RNA of Tetrahymena and its guanosine substrate: implications for biological catalysis by RNA.
    Bass BL; Cech TR
    Nature; 1984 Apr 26-May 2; 308(5962):820-6. PubMed ID: 6562377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.