These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36479452)

  • 1. Use of mathematical modeling and its inverse analysis for precise assessment of pesticide dissipation in a paddy environment.
    Kondo K
    J Pestic Sci; 2022 Aug; 47(3):146-153. PubMed ID: 36479452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse modeling of laboratory experiment to assess parameter transferability of pesticide environmental fate into outdoor experiments under paddy test systems.
    Kondo K; Wakasone Y; Iijima K; Ohyama K
    Pest Manag Sci; 2020 Aug; 76(8):2768-2780. PubMed ID: 32202059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance evaluation of lysimeter experiments for simulating pesticide dissipation in paddy fields. Part 2: Nursery-box application and foliar application.
    Kondo K; Wakasone Y; Okuno J; Nakamura N; Muraoka T; Iijima K; Ohyama K
    J Pestic Sci; 2019 Feb; 44(1):61-70. PubMed ID: 30820174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance evaluation of lysimeter experiments for simulating pesticide dissipation in paddy fields. Part 1: Submerged application of granular pesticides.
    Kondo K; Wakasone Y; Okuno J; Nakamura N; Muraoka T; Iijima K; Ohyama K
    J Pestic Sci; 2019 Feb; 44(1):48-60. PubMed ID: 30820173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inverse analysis to estimate site-specific parameters of a mathematical model for simulating pesticide dissipations in paddy test systems.
    Kondo K; Wakasone Y; Iijima K; Ohyama K
    Pest Manag Sci; 2019 Jun; 75(6):1594-1605. PubMed ID: 30471196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pesticide exposure assessment in rice paddies in Europe: a comparative study of existing mathematical models.
    Karpouzas DG; Cervelli S; Watanabe H; Capri E; Ferrero A
    Pest Manag Sci; 2006 Jul; 62(7):624-36. PubMed ID: 16718738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling complexity in simulating pesticide fate in a rice paddy.
    Luo Y; Spurlock F; Gill S; Goh KS
    Water Res; 2012 Dec; 46(19):6300-8. PubMed ID: 23021519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved PADDY model including uptake by rice roots to predict pesticide behavior in paddy fields under nursery-box and submerged applications.
    Inao K; Iwafune T; Horio T
    J Pestic Sci; 2018 May; 43(2):142-152. PubMed ID: 30363144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PCPF-M model for simulating the fate and transport of pesticides and their metabolites in rice paddy field.
    Boulange J; Malhat F; Thuyet DQ; Watanabe H
    Pest Manag Sci; 2017 Dec; 73(12):2429-2438. PubMed ID: 28580617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting rice pesticide fate and transport following foliage application by an updated PCPF-1 model.
    Tu LH; Boulange J; Phong TK; Thuyet DQ; Watanabe H; Takagi K
    J Environ Manage; 2021 Jan; 277():111356. PubMed ID: 32950777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on pesticide runoff from paddy fields to a river in rural region--2: development and application of a mathematical model.
    Nakano Y; Yoshida T; Inoue T
    Water Res; 2004 Jul; 38(13):3023-30. PubMed ID: 15261540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laboratory and field dissipation of penoxsulam, tricyclazole and profoxydim in rice paddy systems.
    Tsochatzis ED; Tzimou-Tsitouridou R; Menkissoglu-Spiroudi U; Karpouzas DG; Katsantonis D
    Chemosphere; 2013 May; 91(7):1049-57. PubMed ID: 23507498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal-spatial patterns of three types of pesticide loadings in a middle-high latitude agricultural watershed.
    Ouyang W; Cai G; Tysklind M; Yang W; Hao F; Liu H
    Water Res; 2017 Oct; 122():377-386. PubMed ID: 28622630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavior of pesticides in water-sediment systems.
    Katagi T
    Rev Environ Contam Toxicol; 2006; 187():133-251. PubMed ID: 16802581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating the dissipation of two herbicides using micro paddy lysimeters.
    Nhung DT; Phong TK; Watanabe H; Iwafune T; Thuyet DQ
    Chemosphere; 2009 Nov; 77(10):1393-9. PubMed ID: 19811801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing a management-oriented simulation model of pesticide emissions for use in the life cycle assessment of paddy rice cultivation.
    Tang L; Hayashi K; Inao K; Birkved M; Bruun S; Kohyama K; Shimura M
    Sci Total Environ; 2020 May; 716():137034. PubMed ID: 32036139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil column leaching of pesticides.
    Katagi T
    Rev Environ Contam Toxicol; 2013; 221():1-105. PubMed ID: 23090630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring and predicting environmental concentrations of pesticides in air after application to paddy water systems.
    Ferrari F; Karpouzas DG; Trevisan M; Capri E
    Environ Sci Technol; 2005 May; 39(9):2968-75. PubMed ID: 15926540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of the RICEWQ-VADOFT model for simulating the environmental fate of pretilachlor in rice paddies.
    Karpouzas DG; Ferrero A; Vidotto F; Capri E
    Environ Toxicol Chem; 2005 Apr; 24(4):1007-17. PubMed ID: 15839578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diazinon dissipation in pesticide-contaminated paddy soil: kinetic modeling and isolation of a degrading mixed bacterial culture.
    Torabi E; Talebi K; Pourbabaei A; Ahmadzadeh M
    Environ Sci Pollut Res Int; 2017 Feb; 24(4):4117-4133. PubMed ID: 27933498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.