These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 36479580)
1. Virulence-related metabolism is activated in Soares F; Pimentel D; Erban A; Neves C; Reis P; Pereira M; Rego C; Gama-Carvalho M; Kopka J; Fortes AM Hortic Res; 2022; 9():uhac217. PubMed ID: 36479580 [No Abstract] [Full Text] [Related]
2. The study of hormonal metabolism of Trincadeira and Syrah cultivars indicates new roles of salicylic acid, jasmonates, ABA and IAA during grape ripening and upon infection with Botrytis cinerea. Coelho J; Almeida-Trapp M; Pimentel D; Soares F; Reis P; Rego C; Mithöfer A; Fortes AM Plant Sci; 2019 Jun; 283():266-277. PubMed ID: 31128697 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. Agudelo-Romero P; Erban A; Rego C; Carbonell-Bejerano P; Nascimento T; Sousa L; Martínez-Zapater JM; Kopka J; Fortes AM J Exp Bot; 2015 Apr; 66(7):1769-85. PubMed ID: 25675955 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the Molecular Dialogue Between Gray Mold (Botrytis cinerea) and Grapevine (Vitis vinifera) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening. Kelloniemi J; Trouvelot S; Héloir MC; Simon A; Dalmais B; Frettinger P; Cimerman A; Fermaud M; Roudet J; Baulande S; Bruel C; Choquer M; Couvelard L; Duthieuw M; Ferrarini A; Flors V; Le Pêcheur P; Loisel E; Morgant G; Poussereau N; Pradier JM; Rascle C; Trdá L; Poinssot B; Viaud M Mol Plant Microbe Interact; 2015 Nov; 28(11):1167-80. PubMed ID: 26267356 [TBL] [Abstract][Full Text] [Related]
5. Tracking cell wall changes in wine and table grapes undergoing Botrytis cinerea infection using glycan microarrays. Weiller F; Schückel J; Willats WGT; Driouich A; Vivier MA; Moore JP Ann Bot; 2021 Sep; 128(5):527-543. PubMed ID: 34192306 [TBL] [Abstract][Full Text] [Related]
6. Volatile Metabolism of Wine Grape Trincadeira: Impact of Infection with Santos H; Augusto C; Reis P; Rego C; Figueiredo AC; Fortes AM Plants (Basel); 2022 Jan; 11(1):. PubMed ID: 35009143 [TBL] [Abstract][Full Text] [Related]
7. Plant and fungus transcriptomic data from grapevine berries undergoing artificially-induced noble rot caused by Lovato A; Zenoni S; Tornielli GB; Colombo T; Vandelle E; Polverari A Data Brief; 2019 Aug; 25():104150. PubMed ID: 31304217 [TBL] [Abstract][Full Text] [Related]
8. Molecular analysis of the early interaction between the grapevine flower and Botrytis cinerea reveals that prompt activation of specific host pathways leads to fungus quiescence. Haile ZM; Pilati S; Sonego P; Malacarne G; Vrhovsek U; Engelen K; Tudzynski P; Zottini M; Baraldi E; Moser C Plant Cell Environ; 2017 Aug; 40(8):1409-1428. PubMed ID: 28239986 [TBL] [Abstract][Full Text] [Related]
9. Dual Transcriptome and Metabolic Analysis of Haile ZM; Malacarne G; Pilati S; Sonego P; Moretto M; Masuero D; Vrhovsek U; Engelen K; Baraldi E; Moser C Front Plant Sci; 2019; 10():1704. PubMed ID: 32082332 [No Abstract] [Full Text] [Related]
10. Grapevine gray mold disease: infection, defense and management. Rahman MU; Liu X; Wang X; Fan B Hortic Res; 2024 Sep; 11(9):uhae182. PubMed ID: 39247883 [TBL] [Abstract][Full Text] [Related]
11. Histochemical and Microscopic Studies Predict that Grapevine Genotype "Ju mei gui" is Highly Resistant against Rahman MU; Ma Q; Ahmad B; Hanif M; Zhang Y Pathogens; 2020 Mar; 9(4):. PubMed ID: 32244290 [TBL] [Abstract][Full Text] [Related]
12. Deciphering the Molecular Signatures Associated With Resistance to Xiao G; Zhang Q; Zeng X; Chen X; Liu S; Han Y Front Plant Sci; 2022; 13():888939. PubMed ID: 35720571 [TBL] [Abstract][Full Text] [Related]
13. Resistance evaluation of Chinese wild Vitis genotypes against Botrytis cinerea and different responses of resistant and susceptible hosts to the infection. Wan R; Hou X; Wang X; Qu J; Singer SD; Wang Y; Wang X Front Plant Sci; 2015; 6():854. PubMed ID: 26579134 [TBL] [Abstract][Full Text] [Related]
14. Alterations in Sucrose and Phenylpropanoid Metabolism Affected by BABA-Primed Defense in Postharvest Grapes and the Associated Transcriptional Mechanism. Li C; Wang K; Lei C; Cao S; Huang Y; Ji N; Xu F; Zheng Y Mol Plant Microbe Interact; 2021 Nov; 34(11):1250-1266. PubMed ID: 34410840 [TBL] [Abstract][Full Text] [Related]
15. Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries. Hong YS; Martinez A; Liger-Belair G; Jeandet P; Nuzillard JM; Cilindre C J Exp Bot; 2012 Oct; 63(16):5773-85. PubMed ID: 22945941 [TBL] [Abstract][Full Text] [Related]
16. Botrytis cinerea expression profile and metabolism differs between noble and grey rot of grapes. Otto M; Geml J; Hegyi ÁI; Hegyi-Kaló J; Pierneef R; Pogány M; Kun J; Gyenesei A; Váczy KZ Food Microbiol; 2022 Sep; 106():104037. PubMed ID: 35690441 [TBL] [Abstract][Full Text] [Related]
17. Váczy KZ; Otto M; Gomba-Tóth A; Geiger A; Golen R; Hegyi-Kaló J; Cels T; Geml J; Zsófi Z; Hegyi ÁI Front Plant Sci; 2024; 15():1433161. PubMed ID: 39166245 [TBL] [Abstract][Full Text] [Related]
18. Towards Sensor-Based Phenotyping of Physical Barriers of Grapes to Improve Resilience to Herzog K; Schwander F; Kassemeyer HH; Bieler E; Dürrenberger M; Trapp O; Töpfer R Front Plant Sci; 2021; 12():808365. PubMed ID: 35222454 [No Abstract] [Full Text] [Related]
19. Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy: the immune-regulatory role of asparagine synthetase in Botrytis cinerea-tomato interaction. Seifi H; De Vleesschauwer D; Aziz A; Höfte M Plant Signal Behav; 2014; 9(2):e27995. PubMed ID: 24521937 [TBL] [Abstract][Full Text] [Related]
20. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot. Blanco-Ulate B; Amrine KC; Collins TS; Rivero RM; Vicente AR; Morales-Cruz A; Doyle CL; Ye Z; Allen G; Heymann H; Ebeler SE; Cantu D Plant Physiol; 2015 Dec; 169(4):2422-43. PubMed ID: 26450706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]