BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 36479958)

  • 1. Active site architecture of coproporphyrin ferrochelatase with its physiological substrate coproporphyrin III: Propionate interactions and porphyrin core deformation.
    Dali A; Gabler T; Sebastiani F; Destinger A; Furtmüller PG; Pfanzagl V; Becucci M; Smulevich G; Hofbauer S
    Protein Sci; 2023 Jan; 32(1):e4534. PubMed ID: 36479958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate specificity and complex stability of coproporphyrin ferrochelatase is governed by hydrogen-bonding interactions of the four propionate groups.
    Gabler T; Sebastiani F; Helm J; Dali A; Obinger C; Furtmüller PG; Smulevich G; Hofbauer S
    FEBS J; 2022 Mar; 289(6):1680-1699. PubMed ID: 34719106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures and calorimetry reveal catalytically relevant binding mode of coproporphyrin and coproheme in coproporphyrin ferrochelatase.
    Hofbauer S; Helm J; Obinger C; Djinović-Carugo K; Furtmüller PG
    FEBS J; 2020 Jul; 287(13):2779-2796. PubMed ID: 31794133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revisiting catalytic His and Glu residues in coproporphyrin ferrochelatase - unexpected activities of active site variants.
    Gabler T; Dali A; Bellei M; Sebastiani F; Becucci M; Battistuzzi G; Furtmüller PG; Smulevich G; Hofbauer S
    FEBS J; 2024 May; 291(10):2260-2272. PubMed ID: 38390750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron insertion into coproporphyrin III-ferrochelatase complex: Evidence for an intermediate distorted catalytic species.
    Gabler T; Dali A; Sebastiani F; Furtmüller PG; Becucci M; Hofbauer S; Smulevich G
    Protein Sci; 2023 Nov; 32(11):e4788. PubMed ID: 37743577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The coproporphyrin ferrochelatase of
    Hobbs C; Reid JD; Shepherd M
    Biochem J; 2017 Oct; 474(20):3513-3522. PubMed ID: 28864672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porphyrin interactions with wild-type and mutant mouse ferrochelatase.
    Franco R; Ma JG; Lu Y; Ferreira GC; Shelnutt JA
    Biochemistry; 2000 Mar; 39(10):2517-29. PubMed ID: 10704201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proximal ligand tunes active site structure and reactivity in bacterial L. monocytogenes coproheme ferrochelatase.
    Dali A; Sebastiani F; Gabler T; Frattini G; Moreno DM; Estrin DA; Becucci M; Hofbauer S; Smulevich G
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 May; 313():124120. PubMed ID: 38479228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human ferrochelatase: characterization of substrate-iron binding and proton-abstracting residues.
    Sellers VM; Wu CK; Dailey TA; Dailey HA
    Biochemistry; 2001 Aug; 40(33):9821-7. PubMed ID: 11502175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of mouse ferrochelatase variants: what distorts and orientates the porphyrin?
    Szefczyk B; Cordeiro MN; Franco R; Gomes JA
    J Biol Inorg Chem; 2009 Sep; 14(7):1119-28. PubMed ID: 19543923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of protoporphyrin IX and metal derivatives to the active site of wild-type mouse ferrochelatase at low porphyrin-to-protein ratios.
    Lu Y; Sousa A; Franco R; Mangravita A; Ferreira GC; Moura I; Shelnutt JA
    Biochemistry; 2002 Jul; 41(26):8253-62. PubMed ID: 12081474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The conserved active-site loop residues of ferrochelatase induce porphyrin conformational changes necessary for catalysis.
    Shi Z; Franco R; Haddad R; Shelnutt JA; Ferreira GC
    Biochemistry; 2006 Mar; 45(9):2904-12. PubMed ID: 16503645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate interactions with human ferrochelatase.
    Medlock A; Swartz L; Dailey TA; Dailey HA; Lanzilotta WN
    Proc Natl Acad Sci U S A; 2007 Feb; 104(6):1789-93. PubMed ID: 17261801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance Raman Spectroscopic Examination of Ferrochelatase-induced Porphyrin Distortion.
    Franco R; Al-Karadaghi S; Ferreira GC
    J Porphyr Phthalocyanines; 2011 May; 15(5):357-363. PubMed ID: 21776189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissection of porphyrin-induced conformational dynamics in the heme biosynthesis enzyme ferrochelatase.
    Asuru AP; An M; Busenlehner LS
    Biochemistry; 2012 Sep; 51(36):7116-27. PubMed ID: 22897320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nickel(II) chelatase variants directly evolved from murine ferrochelatase: porphyrin distortion and kinetic mechanism.
    McIntyre NR; Franco R; Shelnutt JA; Ferreira GC
    Biochemistry; 2011 Mar; 50(9):1535-44. PubMed ID: 21222436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered orientation of active site residues in variants of human ferrochelatase. Evidence for a hydrogen bond network involved in catalysis.
    Dailey HA; Wu CK; Horanyi P; Medlock AE; Najahi-Missaoui W; Burden AE; Dailey TA; Rose J
    Biochemistry; 2007 Jul; 46(27):7973-9. PubMed ID: 17567154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Product release rather than chelation determines metal specificity for ferrochelatase.
    Medlock AE; Carter M; Dailey TA; Dailey HA; Lanzilotta WN
    J Mol Biol; 2009 Oct; 393(2):308-19. PubMed ID: 19703464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pi-helix switch selective for porphyrin deprotonation and product release in human ferrochelatase.
    Medlock AE; Dailey TA; Ross TA; Dailey HA; Lanzilotta WN
    J Mol Biol; 2007 Nov; 373(4):1006-16. PubMed ID: 17884090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human Ferrochelatase: Insights for the Mechanism of Ferrous Iron Approaching Protoporphyrin IX by QM/MM and QTCP Free Energy Studies.
    Wu J; Wen S; Zhou Y; Chao H; Shen Y
    J Chem Inf Model; 2016 Dec; 56(12):2421-2433. PubMed ID: 27801584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.