BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36480504)

  • 1. The two-component system ChvGI maintains cell envelope homeostasis in Caulobacter crescentus.
    Quintero-Yanes A; Mayard A; Hallez R
    PLoS Genet; 2022 Dec; 18(12):e1010465. PubMed ID: 36480504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ChvG-ChvI and NtrY-NtrX Two-Component Systems Coordinately Regulate Growth of Caulobacter crescentus.
    Stein BJ; Fiebig A; Crosson S
    J Bacteriol; 2021 Aug; 203(17):e0019921. PubMed ID: 34124942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ChvG-ChvI Regulatory Network: A Conserved Global Regulatory Circuit Among the Alphaproteobacteria with Pervasive Impacts on Host Interactions and Diverse Cellular Processes.
    Greenwich JL; Heckel BC; Alakavuklar MA; Fuqua C
    Annu Rev Microbiol; 2023 Sep; 77():131-148. PubMed ID: 37040790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of Bacterial Cell Pole Stabilization in Caulobacter crescentus Sensitizes to Outer Membrane Stress and Peptidoglycan-Directed Antibiotics.
    Vallet SU; Hansen LH; Bistrup FC; Laursen SA; Chapalay JB; Chambon M; Turcatti G; Viollier PH; Kirkpatrick CL
    mBio; 2020 May; 11(3):. PubMed ID: 32371598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of ChvG-ChvI regulon by cell wall stress confers resistance to β-lactam antibiotics and initiates surface spreading in Agrobacterium tumefaciens.
    Williams MA; Bouchier JM; Mason AK; Brown PJB
    PLoS Genet; 2022 Dec; 18(12):e1010274. PubMed ID: 36480495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sugar-Phosphate Metabolism Regulates Stationary-Phase Entry and Stalk Elongation in Caulobacter crescentus.
    de Young KD; Stankeviciute G; Klein EA
    J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31767777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The LovK-LovR two-component system is a regulator of the general stress pathway in Caulobacter crescentus.
    Foreman R; Fiebig A; Crosson S
    J Bacteriol; 2012 Jun; 194(12):3038-49. PubMed ID: 22408156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium tumefaciens.
    Wu CF; Lin JS; Shaw GC; Lai EM
    PLoS Pathog; 2012 Sep; 8(9):e1002938. PubMed ID: 23028331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Roles of the Two-Component System, MtrAB, in Response to Diverse Cell Envelope Stresses in
    Qin X; Zhang K; Nie Y; Wu XL
    Appl Environ Microbiol; 2022 Oct; 88(20):e0133722. PubMed ID: 36190258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motility control through an anti-activation mechanism in Agrobacterium tumefaciens.
    Alakavuklar MA; Heckel BC; Stoner AM; Stembel JA; Fuqua C
    Mol Microbiol; 2021 Nov; 116(5):1281-1297. PubMed ID: 34581467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the PhoB Regulon and Role of PhoU in the Phosphate Starvation Response of Caulobacter crescentus.
    Lubin EA; Henry JT; Fiebig A; Crosson S; Laub MT
    J Bacteriol; 2016 Jan; 198(1):187-200. PubMed ID: 26483520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-component signaling systems and cell cycle control in Caulobacter crescentus.
    Purcell EB; Boutte CC; Crosson S
    Adv Exp Med Biol; 2008; 631():122-30. PubMed ID: 18792685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global transcriptional response of Caulobacter crescentus to iron availability.
    da Silva Neto JF; Lourenço RF; Marques MV
    BMC Genomics; 2013 Aug; 14():549. PubMed ID: 23941329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-transcriptional gene regulation by an Hfq-independent small RNA in Caulobacter crescentus.
    Fröhlich KS; Förstner KU; Gitai Z
    Nucleic Acids Res; 2018 Nov; 46(20):10969-10982. PubMed ID: 30165530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations in Sugar-Nucleotide Synthesis Genes Restore Holdfast Polysaccharide Anchoring to Caulobacter crescentus Holdfast Anchor Mutants.
    Hardy GG; Toh E; Berne C; Brun YV
    J Bacteriol; 2018 Feb; 200(3):. PubMed ID: 29158242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An essential tyrosine phosphatase homolog regulates cell separation, outer membrane integrity, and morphology in Caulobacter crescentus.
    Shapland EB; Reisinger SJ; Bajwa AK; Ryan KR
    J Bacteriol; 2011 Sep; 193(17):4361-70. PubMed ID: 21705597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crosstalk between the tricarboxylic acid cycle and peptidoglycan synthesis in Caulobacter crescentus through the homeostatic control of α-ketoglutarate.
    Irnov I; Wang Z; Jannetty ND; Bustamante JA; Rhee KY; Jacobs-Wagner C
    PLoS Genet; 2017 Aug; 13(8):e1006978. PubMed ID: 28827812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The B12 receptor BtuB alters the membrane integrity of Caulobacter crescentus.
    Menikpurage IP; Barraza D; Meléndez AB; Strebe S; Mera PE
    Microbiology (Reading); 2019 Mar; 165(3):311-323. PubMed ID: 30628887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly of the Caulobacter cell division machine.
    Goley ED; Yeh YC; Hong SH; Fero MJ; Abeliuk E; McAdams HH; Shapiro L
    Mol Microbiol; 2011 Jun; 80(6):1680-98. PubMed ID: 21542856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ECF sigma factor sigma(T) is involved in osmotic and oxidative stress responses in Caulobacter crescentus.
    Alvarez-Martinez CE; Lourenço RF; Baldini RL; Laub MT; Gomes SL
    Mol Microbiol; 2007 Dec; 66(5):1240-55. PubMed ID: 17986185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.