These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36480529)

  • 1. β-tricalcium phosphate/gelatin composite scaffolds incorporated with gentamycin-loaded chitosan microspheres for infected bone defect treatment.
    Liu Y; Zhao Q; Chen C; Wu C; Ma Y
    PLoS One; 2022; 17(12):e0277522. PubMed ID: 36480529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/β-tricalcium phosphate composite scaffold.
    Zhou J; Zhou XG; Wang JW; Zhou H; Dong J
    Bone Joint Res; 2018 Jan; 7(1):46-57. PubMed ID: 29330343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone morphogenetic protein-2 loaded poly(D,L-lactide-co-glycolide) microspheres enhance osteogenic potential of gelatin/hydroxyapatite/β-tricalcium phosphate cryogel composite for alveolar ridge augmentation.
    Chang HC; Yang C; Feng F; Lin FH; Wang CH; Chang PC
    J Formos Med Assoc; 2017 Dec; 116(12):973-981. PubMed ID: 28256366
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Nakhaee FM; Rajabi M; Bakhsheshi-Rad HR
    Biomed Mater; 2021 Jun; 16(4):. PubMed ID: 34038876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo.
    Dasgupta S; Maji K; Nandi SK
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of gelatin-chitosan-nanoβ-TCP based scaffold for orthopaedic application.
    Maji K; Dasgupta S; Pramanik K; Bissoyi A
    Mater Sci Eng C Mater Biol Appl; 2018 May; 86():83-94. PubMed ID: 29525100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of a three-dimensional β-tricalcium-phosphate/gelatin containing chitosan-based nanoparticles for sustained release of bone morphogenetic protein-2: Implication for bone tissue engineering.
    Bastami F; Paknejad Z; Jafari M; Salehi M; Rezai Rad M; Khojasteh A
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():481-491. PubMed ID: 28024612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors of osteogenesis influencing various human stem cells on third-generation gelatin/β-tricalcium phosphate scaffold material.
    Weinand C; Nabili A; Khumar M; Dunn JR; Ramella-Roman J; Jeng JC; Jordan MH; Tabata Y
    Rejuvenation Res; 2011 Apr; 14(2):185-94. PubMed ID: 21235414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat.
    Yu X; Shen G; Shang Q; Zhang Z; Zhao W; Zhang P; Liang D; Ren H; Jiang X
    Int J Biol Macromol; 2021 Dec; 193(Pt A):510-518. PubMed ID: 34710477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printed Platelet-Rich Plasma-Loaded Scaffold with Sustained Cytokine Release for Bone Defect Repair.
    Liu C; Peng Z; Xu H; Gao H; Li J; Jin Y; Wang Y; Wang C; Liu Y; Hu Y; Jiang C; Guo J; Zhu L
    Tissue Eng Part A; 2022 Aug; 28(15-16):700-711. PubMed ID: 35152730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitosan/gelatin/platelet gel enriched by a combination of hydroxyapatite and beta-tricalcium phosphate in healing of a radial bone defect model in rat.
    Oryan A; Alidadi S; Bigham-Sadegh A; Meimandi-Parizi A
    Int J Biol Macromol; 2017 Aug; 101():630-637. PubMed ID: 28363647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Therapeutic efficacy of antibiotic-loaded gelatin microsphere/silk fibroin scaffolds in infected full-thickness burns.
    Lan Y; Li W; Jiao Y; Guo R; Zhang Y; Xue W; Zhang Y
    Acta Biomater; 2014 Jul; 10(7):3167-76. PubMed ID: 24704698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesoporous silica nanoparticles/gelatin porous composite scaffolds with localized and sustained release of vancomycin for treatment of infected bone defects.
    Zhou X; Weng W; Chen B; Feng W; Wang W; Nie W; Chen L; Mo X; Su J; He C
    J Mater Chem B; 2018 Feb; 6(5):740-752. PubMed ID: 32254261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced osteogenesis of honeycomb β-tricalcium phosphate scaffold by construction of interconnected pore structure: An in vivo study.
    Lu T; Feng S; He F; Ye J
    J Biomed Mater Res A; 2020 Mar; 108(3):645-653. PubMed ID: 31747100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering.
    Fahimipour F; Rasoulianboroujeni M; Dashtimoghadam E; Khoshroo K; Tahriri M; Bastami F; Lobner D; Tayebi L
    Dent Mater; 2017 Nov; 33(11):1205-1216. PubMed ID: 28882369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printed Multifunctional Biomimetic Bone Scaffold Combined with TP-Mg Nanoparticles for the Infectious Bone Defects Repair.
    Hu X; Chen J; Yang S; Zhang Z; Wu H; He J; Qin L; Cao J; Xiong C; Li K; Liu X; Qian Z
    Small; 2024 May; ():e2403681. PubMed ID: 38804867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ forming alginate/gelatin hydrogel scaffold through Schiff base reaction embedded with curcumin-loaded chitosan microspheres for bone tissue regeneration.
    Amiryaghoubi N; Fathi M; Safary A; Javadzadeh Y; Omidi Y
    Int J Biol Macromol; 2024 Jan; 256(Pt 2):128335. PubMed ID: 38007028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of gelatin-based biocompatible porous composite scaffold for bone tissue engineering.
    Khan MN; Islam JM; Khan MA
    J Biomed Mater Res A; 2012 Nov; 100(11):3020-8. PubMed ID: 22707185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced bone regeneration by gelatin-β-tricalcium phosphate composites enabling controlled release of bFGF.
    Omata K; Matsuno T; Asano K; Hashimoto Y; Tabata Y; Satoh T
    J Tissue Eng Regen Med; 2014 Aug; 8(8):604-11. PubMed ID: 22782937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metformin-loaded β-TCP/CTS/SBA-15 composite scaffolds promote alveolar bone regeneration in a rat model of periodontitis.
    Xu W; Tan W; Li C; Wu K; Zeng X; Xiao L
    J Mater Sci Mater Med; 2021 Dec; 32(12):145. PubMed ID: 34862928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.