BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36481232)

  • 1. Contribution of metabolic abnormalities to acute myeloid leukemia pathogenesis.
    Egan G; Schimmer AD
    Trends Cell Biol; 2023 Jun; 33(6):455-462. PubMed ID: 36481232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The thymidine dideoxynucleoside analog, alovudine, inhibits the mitochondrial DNA polymerase γ, impairs oxidative phosphorylation and promotes monocytic differentiation in acute myeloid leukemia.
    Yehudai D; Liyanage SU; Hurren R; Rizoska B; Albertella M; Gronda M; Jeyaraju DV; Wang X; Barghout SH; MacLean N; Siriwardena TP; Jitkova Y; Targett-Adams P; Schimmer AD
    Haematologica; 2019 May; 104(5):963-972. PubMed ID: 30573504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial metabolism: powering new directions in acute myeloid leukemia.
    Stubbins RJ; Maksakova IA; Sanford DS; Rouhi A; Kuchenbauer F
    Leuk Lymphoma; 2021 Oct; 62(10):2331-2341. PubMed ID: 34060970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemoresistance in acute myeloid leukemia: An alternative single-cell RNA sequencing approach.
    Cheng PL; Hsiao TH; Chen CH; Hung MN; Jhan PP; Lee LW; Wu TS; Tsai JR; Teng CJ
    Hematol Oncol; 2023 Aug; 41(3):499-509. PubMed ID: 36790759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cell of origin and the leukemia stem cell in acute myeloid leukemia.
    Chopra M; Bohlander SK
    Genes Chromosomes Cancer; 2019 Dec; 58(12):850-858. PubMed ID: 31471945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased release of microvesicles containing mitochondria is associated with the myeloid differentiation of AML-M5 leukaemia cells.
    Zhao F; Sun L; Yang N; Zheng W; Shen P; Huang Y; Lu Y
    Exp Cell Res; 2020 Oct; 395(2):112213. PubMed ID: 32758487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signalling mechanisms that regulate metabolic profile and autophagy of acute myeloid leukaemia cells.
    Pereira O; Teixeira A; Sampaio-Marques B; Castro I; Girão H; Ludovico P
    J Cell Mol Med; 2018 Oct; 22(10):4807-4817. PubMed ID: 30117681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of LIN28B impairs leukemia cell growth and metabolism in acute myeloid leukemia.
    Zhou J; Bi C; Ching YQ; Chooi JY; Lu X; Quah JY; Toh SH; Chan ZL; Tan TZ; Chong PS; Chng WJ
    J Hematol Oncol; 2017 Jul; 10(1):138. PubMed ID: 28693523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting mitochondrial respiration for the treatment of acute myeloid leukemia.
    Carter JL; Hege K; Kalpage HA; Edwards H; Hüttemann M; Taub JW; Ge Y
    Biochem Pharmacol; 2020 Dec; 182():114253. PubMed ID: 33011159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolving insights on histone methylome regulation in human acute myeloid leukemia pathogenesis and targeted therapy.
    Boila LD; Sengupta A
    Exp Hematol; 2020 Dec; 92():19-31. PubMed ID: 32950598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knockdown of miR-128a induces Lin28a expression and reverts myeloid differentiation blockage in acute myeloid leukemia.
    De Luca L; Trino S; Laurenzana I; Tagliaferri D; Falco G; Grieco V; Bianchino G; Nozza F; Campia V; D'Alessio F; La Rocca F; Caivano A; Villani O; Cilloni D; Musto P; Del Vecchio L
    Cell Death Dis; 2017 Jun; 8(6):e2849. PubMed ID: 28569789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolomics in acute myeloid leukemia.
    Wojcicki AV; Kasowski MM; Sakamoto KM; Lacayo N
    Mol Genet Metab; 2020 Aug; 130(4):230-238. PubMed ID: 32457018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Mutations in the Mitochondrial Encoded Electron Transport Chain Complexes in Acute Myeloid Leukemia.
    Wu S; Akhtari M; Alachkar H
    Sci Rep; 2018 Sep; 8(1):13301. PubMed ID: 30185817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SIRT3 deacetylase activity confers chemoresistance in AML via regulation of mitochondrial oxidative phosphorylation.
    Ma J; Liu B; Yu D; Zuo Y; Cai R; Yang J; Cheng J
    Br J Haematol; 2019 Oct; 187(1):49-64. PubMed ID: 31236919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia.
    de Beauchamp L; Himonas E; Helgason GV
    Leukemia; 2022 Jan; 36(1):1-12. PubMed ID: 34561557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SYK inhibition targets acute myeloid leukemia stem cells by blocking their oxidative metabolism.
    Polak A; Bialopiotrowicz E; Krzymieniewska B; Wozniak J; Stojak M; Cybulska M; Kaniuga E; Mikula M; Jablonska E; Gorniak P; Noyszewska-Kania M; Szydlowski M; Piechna K; Piwocka K; Bugajski L; Lech-Maranda E; Barankiewicz J; Kolkowska-Lesniak A; Patkowska E; Glodkowska-Mrowka E; Baran N; Juszczynski P
    Cell Death Dis; 2020 Nov; 11(11):956. PubMed ID: 33159047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic dependencies of acute myeloid leukemia stem cells.
    Shi X; Feng M; Nakada D
    Int J Hematol; 2024 May; ():. PubMed ID: 38750343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting Cellular Metabolism in Acute Myeloid Leukemia and The Role of Patient Heterogeneity.
    Grønningsæter IS; Reikvam H; Aasebø E; Bartaula-Brevik S; Tvedt TH; Bruserud Ø; Hatfield KJ
    Cells; 2020 May; 9(5):. PubMed ID: 32392896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive Genomic Analysis of Noonan Syndrome and Acute Myeloid Leukemia in Adults: A Review and Future Directions.
    Alhumaid MS; Dasouki MJ; Ahmed SO; AbalKhail H; Hagos S; Wakil S; Hashmi SK
    Acta Haematol; 2020; 143(6):583-593. PubMed ID: 32541138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting Myeloperoxidase Disrupts Mitochondrial Redox Balance and Overcomes Cytarabine Resistance in Human Acute Myeloid Leukemia.
    Hosseini M; Rezvani HR; Aroua N; Bosc C; Farge T; Saland E; Guyonnet-Dupérat V; Zaghdoudi S; Jarrou L; Larrue C; Sabatier M; Mouchel PL; Gotanègre M; Piechaczyk M; Bossis G; Récher C; Sarry JE
    Cancer Res; 2019 Oct; 79(20):5191-5203. PubMed ID: 31358527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.