These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36481747)

  • 1. Extending the dynamic temperature range of Boltzmann thermometers.
    van Swieten TP; Steenhoff JM; Vlasblom A; de Berg R; Mattern SP; Rabouw FT; Suta M; Meijerink A
    Light Sci Appl; 2022 Dec; 11(1):343. PubMed ID: 36481747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Making Nd
    Suta M; Antić Ž; Ðorđević V; Kuzman S; Dramićanin MD; Meijerink A
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32197319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One ion to catch them all: Targeted high-precision Boltzmann thermometry over a wide temperature range with Gd
    Yu D; Li H; Zhang D; Zhang Q; Meijerink A; Suta M
    Light Sci Appl; 2021 Nov; 10(1):236. PubMed ID: 34811347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual functionality luminescence thermometry with Gd
    Ma Y; Aierken A; Wang Y; Meijerink A
    J Colloid Interface Sci; 2023 May; 638():640-649. PubMed ID: 36774877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted high-precision up-converting thermometer platform over multiple temperature zones with Er
    Rao Z; Li Z; Zhao X; Gong X
    Mater Horiz; 2023 May; 10(5):1816-1824. PubMed ID: 36857693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Calibrated Double Luminescent Thermometers Through Upconverting Nanoparticles.
    Brites CDS; Martínez ED; Urbano RR; Rettori C; Carlos LD
    Front Chem; 2019; 7():267. PubMed ID: 31058142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pushing the Limit of Boltzmann Distribution in Cr
    Back M; Ueda J; Brik MG; Tanabe S
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38325-38332. PubMed ID: 32846490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extending the temperature sensing range using Eu
    Sharma SK; Köhler T; Beyer J; Fuchs M; Gloaguen R; Heitmann J
    Phys Chem Chem Phys; 2019 Jul; 21(29):16329-16336. PubMed ID: 31309210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boltzmann- and Non-Boltzmann-Based Thermometers in the First, Second and Third Biological Windows for the SrF
    Wang L; Li L; Yuan M; Yang Z; Han K; Wang H; Xu X
    Nanoscale Res Lett; 2022 Dec; 17(1):80. PubMed ID: 36040571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NIR luminescence thermometers based on Yb-Nd coordination compounds for the 83-393 K temperature range.
    Orlova AV; Kozhevnikova VY; Goloveshkin AS; Lepnev LS; Utochnikova VV
    Dalton Trans; 2022 Apr; 51(14):5419-5425. PubMed ID: 35333273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel optical thermometry strategy based on emission of Tm
    Saidi K; Dammak M; Soler-Carracedo K; Martín IR
    Dalton Trans; 2022 Mar; 51(13):5108-5117. PubMed ID: 35266463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodal Non-Contact Luminescence Thermometry with Cr-Doped Oxides.
    Mykhaylyk VB; Kraus H; Zhydachevskyy Y; Tsiumra V; Luchechko A; Wagner A; Suchocki A
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32942602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lanthanide doped luminescence nanothermometers in the biological windows: strategies and applications.
    Nexha A; Carvajal JJ; Pujol MC; Díaz F; Aguiló M
    Nanoscale; 2021 May; 13(17):7913-7987. PubMed ID: 33899861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-doped LaVO
    Kolesnikov IE; Mamonova DV; Kurochkin MA; Medvedev VA; Kolesnikov EY
    Phys Chem Chem Phys; 2022 Nov; 24(45):27940-27948. PubMed ID: 36373416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the Influence of Disorder on Lanthanide Luminescence Using Eu-Doped LaPO
    van Hest JJHA; Blab GA; Gerritsen HC; de Mello Donega C; Meijerink A
    J Phys Chem C Nanomater Interfaces; 2017 Sep; 121(35):19373-19382. PubMed ID: 28919934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The thermal stabilities of luminescence and microstructures of Eu2+-doped KBaPO4 and NaSrPO4 with β-K2SO4 type structure.
    Zhang S; Nakai Y; Tsuboi T; Huang Y; Seo HJ
    Inorg Chem; 2011 Apr; 50(7):2897-904. PubMed ID: 21355563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly-sensitive Eu(3+) ratiometric thermometers based on excited state absorption with predictable calibration.
    Souza AS; Nunes LA; Silva IG; Oliveira FA; da Luz LL; Brito HF; Felinto MC; Ferreira RA; Júnior SA; Carlos LD; Malta OL
    Nanoscale; 2016 Mar; 8(9):5327-33. PubMed ID: 26883124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photophysical and Primary Self-Referencing Thermometric Properties of Europium Hydrogen-Bonded Triazine Frameworks.
    Yang C; Mara D; Goura J; Artizzu F; Van Deun R
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. THE NATURE AND CONTROL OF REACTIONS IN BIOLUMINESCENCE : WITH SPECIAL REFERENCE TO THE MECHANISM OF REVERSIBLE AND IRREVERSIBLE INHIBITIONS BY HYDROGEN AND HYDROXYL IONS, TEMPERATURE, PRESSURE, ALCOHOL, URETHANE, AND SULFANILAMIDE IN BACTERIA.
    Johnson FH; Eyring H; Steblay R; Chaplin H; Huber C; Gherardi G
    J Gen Physiol; 1945 May; 28(5):463-537. PubMed ID: 19873433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise thermometry at ultra-low temperatures.
    Rothfuss D; Reiser A; Fleischmann A; Enss C
    Philos Trans A Math Phys Eng Sci; 2016 Mar; 374(2064):20150051. PubMed ID: 26903101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.