These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36481761)

  • 1. GCHA-Net: Global context and hybrid attention network for automatic liver segmentation.
    Liu H; Fu Y; Zhang S; Liu J; Wang Y; Wang G; Fang J
    Comput Biol Med; 2023 Jan; 152():106352. PubMed ID: 36481761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S2DA-Net: Spatial and spectral-learning double-branch aggregation network for liver tumor segmentation in CT images.
    Liu H; Yang J; Jiang C; He S; Fu Y; Zhang S; Hu X; Fang J; Ji W
    Comput Biol Med; 2024 May; 174():108400. PubMed ID: 38613888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid-attention densely connected U-Net with GAP for extracting livers from CT volumes.
    Chen Y; Hu F; Wang Y; Zheng C
    Med Phys; 2022 Feb; 49(2):1015-1033. PubMed ID: 35015305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ResTransUnet: An effective network combined with Transformer and U-Net for liver segmentation in CT scans.
    Ou J; Jiang L; Bai T; Zhan P; Liu R; Xiao H
    Comput Biol Med; 2024 Jul; 177():108625. PubMed ID: 38823365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HFRU-Net: High-Level Feature Fusion and Recalibration UNet for Automatic Liver and Tumor Segmentation in CT Images.
    Kushnure DT; Talbar SN
    Comput Methods Programs Biomed; 2022 Jan; 213():106501. PubMed ID: 34752959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PA-ResSeg: A phase attention residual network for liver tumor segmentation from multiphase CT images.
    Xu Y; Cai M; Lin L; Zhang Y; Hu H; Peng Z; Zhang Q; Chen Q; Mao X; Iwamoto Y; Han XH; Chen YW; Tong R
    Med Phys; 2021 Jul; 48(7):3752-3766. PubMed ID: 33950526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ELTS-Net: An enhanced liver tumor segmentation network with augmented receptive field and global contextual information.
    Guo X; Wang Z; Wu P; Li Y; Alsaadi FE; Zeng N
    Comput Biol Med; 2024 Feb; 169():107879. PubMed ID: 38142549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UCR-Net: U-shaped context residual network for medical image segmentation.
    Sun Q; Dai M; Lan Z; Cai F; Wei L; Yang C; Chen R
    Comput Biol Med; 2022 Dec; 151(Pt A):106203. PubMed ID: 36306581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attention Connect Network for Liver Tumor Segmentation from CT and MRI Images.
    Shao J; Luan S; Ding Y; Xue X; Zhu B; Wei W
    Technol Cancer Res Treat; 2024; 23():15330338231219366. PubMed ID: 38179668
    [No Abstract]   [Full Text] [Related]  

  • 10. MANet: a multi-attention network for automatic liver tumor segmentation in computed tomography (CT) imaging.
    Hettihewa K; Kobchaisawat T; Tanpowpong N; Chalidabhongse TH
    Sci Rep; 2023 Nov; 13(1):20098. PubMed ID: 37973987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RA V-Net: deep learning network for automated liver segmentation.
    Lee Z; Qi S; Fan C; Xie Z; Meng J
    Phys Med Biol; 2022 Jun; 67(12):. PubMed ID: 35588720
    [No Abstract]   [Full Text] [Related]  

  • 12. Automatic liver tumor segmentation used the cascade multi-scale attention architecture method based on 3D U-Net.
    Wu Y; Shen H; Tan Y; Shi Y
    Int J Comput Assist Radiol Surg; 2022 Oct; 17(10):1915-1922. PubMed ID: 35672595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GC-Net: Global context network for medical image segmentation.
    Ni J; Wu J; Tong J; Chen Z; Zhao J
    Comput Methods Programs Biomed; 2020 Jul; 190():105121. PubMed ID: 31623863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hepatic vessel segmentation based on 3D swin-transformer with inductive biased multi-head self-attention.
    Wu M; Qian Y; Liao X; Wang Q; Heng PA
    BMC Med Imaging; 2023 Jul; 23(1):91. PubMed ID: 37422639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MG-Net: Multi-level global-aware network for thymoma segmentation.
    Li J; Sun W; von Deneen KM; Fan X; An G; Cui G; Zhang Y
    Comput Biol Med; 2023 Mar; 155():106635. PubMed ID: 36791547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CA-Net: Comprehensive Attention Convolutional Neural Networks for Explainable Medical Image Segmentation.
    Gu R; Wang G; Song T; Huang R; Aertsen M; Deprest J; Ourselin S; Vercauteren T; Zhang S
    IEEE Trans Med Imaging; 2021 Feb; 40(2):699-711. PubMed ID: 33136540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shift-channel attention and weighted-region loss function for liver and dense tumor segmentation.
    Li J; Huang G; He J; Chen Z; Pun CM; Yu Z; Ling WK; Liu L; Zhou J; Huang J
    Med Phys; 2022 Nov; 49(11):7193-7206. PubMed ID: 35746843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Context fusion network with multi-scale-aware skip connection and twin-split attention for liver tumor segmentation.
    Wang Z; Zhu J; Fu S; Ye Y
    Med Biol Eng Comput; 2023 Dec; 61(12):3167-3180. PubMed ID: 37470963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid dilation and attention residual U-Net for medical image segmentation.
    Wang Z; Zou Y; Liu PX
    Comput Biol Med; 2021 Jul; 134():104449. PubMed ID: 33993015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CFHA-Net: A polyp segmentation method with cross-scale fusion strategy and hybrid attention.
    Yang L; Zhai C; Liu Y; Yu H
    Comput Biol Med; 2023 Sep; 164():107301. PubMed ID: 37573723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.