These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36481761)

  • 21. DCACNet: Dual context aggregation and attention-guided cross deconvolution network for medical image segmentation.
    Lu H; Tian S; Yu L; Liu L; Cheng J; Wu W; Kang X; Zhang D
    Comput Methods Programs Biomed; 2022 Feb; 214():106566. PubMed ID: 34890992
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SAR-U-Net: Squeeze-and-excitation block and atrous spatial pyramid pooling based residual U-Net for automatic liver segmentation in Computed Tomography.
    Wang J; Lv P; Wang H; Shi C
    Comput Methods Programs Biomed; 2021 Sep; 208():106268. PubMed ID: 34274611
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Dynamic Context Encoder Network for Liver Tumor Segmentation.
    Liu J; Fang J; Jiang T; Zhou C; Shao L; Song Y
    Curr Med Imaging; 2024; 20():e15734056303257. PubMed ID: 38874025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PMJAF-Net: Pyramidal multi-scale joint attention and adaptive fusion network for explainable skin lesion segmentation.
    Li H; Zeng P; Bai C; Wang W; Yu Y; Yu P
    Comput Biol Med; 2023 Oct; 165():107454. PubMed ID: 37716246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RMAU-Net: Residual Multi-Scale Attention U-Net For liver and tumor segmentation in CT images.
    Jiang L; Ou J; Liu R; Zou Y; Xie T; Xiao H; Bai T
    Comput Biol Med; 2023 May; 158():106838. PubMed ID: 37030263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multi-scale attention and deep supervision-based 3D UNet for automatic liver segmentation from CT.
    Wang J; Zhang X; Guo L; Shi C; Tamura S
    Math Biosci Eng; 2023 Jan; 20(1):1297-1316. PubMed ID: 36650812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An attention-guided network for surgical instrument segmentation from endoscopic images.
    Yang L; Gu Y; Bian G; Liu Y
    Comput Biol Med; 2022 Dec; 151(Pt A):106216. PubMed ID: 36356389
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tumor attention networks: Better feature selection, better tumor segmentation.
    Pang S; Du A; Orgun MA; Wang Y; Yu Z
    Neural Netw; 2021 Aug; 140():203-222. PubMed ID: 33780873
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MHSU-Net: A more versatile neural network for medical image segmentation.
    Ma H; Zou Y; Liu PX
    Comput Methods Programs Biomed; 2021 Sep; 208():106230. PubMed ID: 34148011
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PA-Net: A phase attention network fusing venous and arterial phase features of CT images for liver tumor segmentation.
    Liu Z; Hou J; Pan X; Zhang R; Shi Z
    Comput Methods Programs Biomed; 2024 Feb; 244():107997. PubMed ID: 38176329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RDCTrans U-Net: A Hybrid Variable Architecture for Liver CT Image Segmentation.
    Li L; Ma H
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Local and Context-Attention Adaptive LCA-Net for Thyroid Nodule Segmentation in Ultrasound Images.
    Tao Z; Dang H; Shi Y; Wang W; Wang X; Ren S
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Multi-Scale Liver Tumor Segmentation Method Based on Residual and Hybrid Attention Enhanced Network with Contextual Integration.
    Sun L; Jiang L; Wang M; Wang Z; Xin Y
    Sensors (Basel); 2024 Sep; 24(17):. PubMed ID: 39275756
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Residual Deformable Split Channel and Spatial U-Net for Automated Liver and Liver Tumour Segmentation.
    Saumiya S; Franklin SW
    J Digit Imaging; 2023 Oct; 36(5):2164-2178. PubMed ID: 37464213
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A three-path network with multi-scale selective feature fusion, edge-inspiring and edge-guiding for liver tumor segmentation.
    Shui Y; Wang Z; Liu B; Wang W; Fu S; Li Y
    Comput Biol Med; 2024 Jan; 168():107841. PubMed ID: 38081117
    [TBL] [Abstract][Full Text] [Related]  

  • 36. UMRFormer-net: a three-dimensional U-shaped pancreas segmentation method based on a double-layer bridged transformer network.
    Fang K; He B; Liu L; Hu H; Fang C; Huang X; Jia F
    Quant Imaging Med Surg; 2023 Mar; 13(3):1619-1630. PubMed ID: 36915332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CGBA-Net: context-guided bidirectional attention network for surgical instrument segmentation.
    Wang Y; Hu Y; Shen J; Zhang X; Li H; Qiu Z; Ye F; Liu J
    Int J Comput Assist Radiol Surg; 2023 Oct; 18(10):1769-1781. PubMed ID: 37199827
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CAM-Wnet: An effective solution for accurate pulmonary embolism segmentation.
    Liu Z; Yuan H; Wang H
    Med Phys; 2022 Aug; 49(8):5294-5303. PubMed ID: 35609213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Attention-guided context asymmetric fusion networks for the liver tumor segmentation of computed tomography images.
    Wang F; Cheng XL; Luo NB; Su DK
    Quant Imaging Med Surg; 2024 Jul; 14(7):4825-4839. PubMed ID: 39022272
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive Attention Convolutional Neural Network for Liver Tumor Segmentation.
    Luan S; Xue X; Ding Y; Wei W; Zhu B
    Front Oncol; 2021; 11():680807. PubMed ID: 34434891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.