These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36481872)

  • 1. Optical vortex beam controlling based on fork grating stored in a dye-doped liquid crystal cell.
    Soleimani P; Khoshsima H; Yeganeh M
    Sci Rep; 2022 Dec; 12(1):21271. PubMed ID: 36481872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An azimuthally-modified linear phase grating: Generation of varied radial carpet beams over different diffraction orders with controlled intensity sharing among the generated beams.
    Rasouli S; Khazaei AM
    Sci Rep; 2019 Aug; 9(1):12472. PubMed ID: 31462671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of diffraction of vortex beams from 2D orthogonal periodic structures and Talbot self-healing under vortex beam illumination.
    Rasouli S; Hebri D
    J Opt Soc Am A Opt Image Sci Vis; 2019 May; 36(5):800-808. PubMed ID: 31045007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of perfect optical vortices using a Bessel-Gaussian beam diffracted by curved fork grating.
    Karahroudi MK; Parmoon B; Qasemi M; Mobashery A; Saghafifar H
    Appl Opt; 2017 Jul; 56(21):5817-5823. PubMed ID: 29047895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically Controlled Diffraction Grating in Azo Dye-Doped Liquid Crystals.
    Tien CL; Lin RJ; Kang CC; Huang BY; Kuo CT; Huang SY
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31208143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical study on the diffraction-based generation of a 2D orthogonal lattice of optical beams: physical bases and application for a vortex beam multiplication.
    Hebri D; Rasouli S
    J Opt Soc Am A Opt Image Sci Vis; 2022 Sep; 39(9):1694-1711. PubMed ID: 36215638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient nonlinear vortex beam generation by using a compact nonlinear fork grating.
    Yang Y; Li H; Liu H; Chen X
    Opt Lett; 2023 Dec; 48(24):6376-6379. PubMed ID: 38099752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic control of diffraction angle and separation properties of wavelength and polarization by quaternary liquid crystal grating.
    Kawai K; Sakamoto M; Noda K; Sasaki T; Kawatsuki N; Ono H
    Appl Opt; 2019 Jun; 58(16):4234-4240. PubMed ID: 31251225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Propagation of a multi-vortex beam: far-field diffraction of a Gaussian beam from a multi-fork phase grating.
    Rasouli S; Gholami A; Amiri P; Kotlyar VV; Kovalev AA
    J Opt Soc Am A Opt Image Sci Vis; 2022 Jul; 39(7):1246-1255. PubMed ID: 36215610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory and generation of heterogeneous 2D arrays of optical vortices by using 2D fork-shaped gratings: topological charge and power sharing management.
    Khazaei AM; Hebri D; Rasouli S
    Opt Express; 2023 May; 31(10):16361-16379. PubMed ID: 37157716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffraction and Polarization Properties of Electrically-Tunable Nematic Liquid Crystal Grating.
    Huang SY; Huang BY; Kang CC; Kuo CT
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32859052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vortex sensing diffraction gratings.
    Moreno I; Davis JA; Pascoguin BM; Mitry MJ; Cottrell DM
    Opt Lett; 2009 Oct; 34(19):2927-9. PubMed ID: 19794770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating.
    Moreno I; Davis JA; Ruiz I; Cottrell DM
    Opt Express; 2010 Mar; 18(7):7173-83. PubMed ID: 20389738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical properties of a dichroic dye-doped liquid-crystal grating and its application to optical rotation measurement.
    Honma M; Takahashi N; Nose T
    Appl Opt; 2017 Jul; 56(21):5849-5856. PubMed ID: 29047901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of acoustic vortices and acousto-optic interactions with acoustic vortex beams.
    Martynyuk-Lototska I; Kostyrko M; Adamenko D; Skab I; Vlokh R
    Appl Opt; 2023 May; 62(14):3643-3648. PubMed ID: 37706981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled generation of array beams of higher order orbital angular momentum and study of their frequency-doubling characteristics.
    Harshith BS; Samanta GK
    Sci Rep; 2019 Jul; 9(1):10916. PubMed ID: 31358804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gaussian beam diffraction from radial structures: detailed study on the diffraction from sinusoidal amplitude radial gratings.
    Azizkhani R; Hebri D; Rasouli S
    Opt Express; 2023 Jun; 31(13):20665-20682. PubMed ID: 37381185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photorefractive effect induced by polarization gratings in dye-doped liquid crystals.
    Wang JR; Lee CR; Lee MR; Fuh AY
    Opt Lett; 2004 Jan; 29(1):110-2. PubMed ID: 14719677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal triplicator design applied to a geometric phase vortex grating.
    Marco D; Sánchez-López MM; Cofré A; Vargas A; Moreno I
    Opt Express; 2019 May; 27(10):14472-14486. PubMed ID: 31163896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Switchable holographic image splitter fabricated with dye-doped liquid crystals.
    Su WC; Hung WB; Hsiao HY
    Opt Express; 2013 Mar; 21(5):6640-9. PubMed ID: 23482236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.