BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 36482378)

  • 1. Cerium oxide-based nanozyme suppresses kidney calcium oxalate crystal depositions via reversing hyperoxaluria-induced oxidative stress damage.
    Deng J; Yu B; Chang Z; Wu S; Li G; Chen W; Li S; Duan X; Wu W; Sun X; Zeng G; Liu H
    J Nanobiotechnology; 2022 Dec; 20(1):516. PubMed ID: 36482378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autophagy inhibition attenuates hyperoxaluria-induced renal tubular oxidative injury and calcium oxalate crystal depositions in the rat kidney.
    Duan X; Kong Z; Mai X; Lan Y; Liu Y; Yang Z; Zhao Z; Deng T; Zeng T; Cai C; Li S; Zhong W; Wu W; Zeng G
    Redox Biol; 2018 Jun; 16():414-425. PubMed ID: 29653411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A polyherbal formulation attenuates hyperoxaluria-induced oxidative stress and prevents subsequent deposition of calcium oxalate crystals and renal cell injury in rat kidneys.
    Bodakhe KS; Namdeo KP; Patra KC; Machwal L; Pareta SK
    Chin J Nat Med; 2013 Sep; 11(5):466-71. PubMed ID: 24359768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Sodium-Induced Oxidative Stress and Poor Anticrystallization Defense Aggravate Calcium Oxalate Crystal Formation in Rat Hyperoxaluric Kidneys.
    Huang HS; Ma MC
    PLoS One; 2015; 10(8):e0134764. PubMed ID: 26241473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitamin E therapy prevents hyperoxaluria-induced calcium oxalate crystal deposition in the kidney by improving renal tissue antioxidant status.
    Thamilselvan S; Menon M
    BJU Int; 2005 Jul; 96(1):117-26. PubMed ID: 15963133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rosiglitazone Suppresses Calcium Oxalate Crystal Binding and Oxalate-Induced Oxidative Stress in Renal Epithelial Cells by Promoting PPAR-
    Liu YD; Yu SL; Wang R; Liu JN; Jin YS; Li YF; An RH
    Oxid Med Cell Longev; 2019; 2019():4826525. PubMed ID: 31781338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of
    Deng JW; Li CY; Huang YP; Liu WF; Zhang Q; Long J; Wu WQ; Huang LH; Zeng GH; Sun XY
    J Agric Food Chem; 2024 Mar; 72(12):6372-6388. PubMed ID: 38471112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protective effects of interleukin-22 on oxalate-induced crystalline renal injury via alleviating mitochondrial damage and inflammatory response.
    Gu Y; Shen Y; Chen W; He H; Ma Y; Mei X; Ju D; Liu H
    Appl Microbiol Biotechnol; 2022 Apr; 106(7):2637-2649. PubMed ID: 35294590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Protective Roles of Estrogen Receptor
    Zhu W; Zhao Z; Chou FJ; Zuo L; Liu T; Bushinsky D; Chang C; Zeng G; Yeh S
    Oxid Med Cell Longev; 2019; 2019():5305014. PubMed ID: 31178964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gallotannin suppresses calcium oxalate crystal binding and oxalate-induced oxidative stress in renal epithelial cells.
    Lee HJ; Jeong SJ; Park MN; Linnes M; Han HJ; Kim JH; Lieske JC; Kim SH
    Biol Pharm Bull; 2012; 35(4):539-44. PubMed ID: 22466558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of NADPH oxidase inhibition on the expression of kidney injury molecule and calcium oxalate crystal deposition in hydroxy-L-proline-induced hyperoxaluria in the male Sprague-Dawley rats.
    Zuo J; Khan A; Glenton PA; Khan SR
    Nephrol Dial Transplant; 2011 Jun; 26(6):1785-96. PubMed ID: 21378157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rottlerin, a polyphenolic compound from the fruits of Mallotus phillipensis (Lam.) Müll.Arg., impedes oxalate/calcium oxalate induced pathways of oxidative stress in male wistar rats.
    Chhiber N; Kaur T; Singla S
    Phytomedicine; 2016 Sep; 23(10):989-97. PubMed ID: 27444343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxycitric Acid Inhibits Renal Calcium Oxalate Deposition by Reducing Oxidative Stress and Inflammation.
    Liu X; Yuan P; Sun X; Chen Z
    Curr Mol Med; 2020; 20(7):527-535. PubMed ID: 31902360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protective Effect of Degraded
    Peng QL; Li CY; Zhao YW; Sun XY; Liu H; Ouyang JM
    Oxid Med Cell Longev; 2021; 2021():6463281. PubMed ID: 33763169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repair activity and crystal adhesion inhibition of polysaccharides with different molecular weights from red algae Porphyra yezoensis against oxalate-induced oxidative damage in renal epithelial cells.
    Sun XY; Zhang H; Liu J; Ouyang JM
    Food Funct; 2019 Jul; 10(7):3851-3867. PubMed ID: 31250859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium oxalate stone disease: role of lipid peroxidation and antioxidants.
    Selvam R
    Urol Res; 2002 Mar; 30(1):35-47. PubMed ID: 11942324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Nox4 in High Calcium-Induced Renal Oxidative Stress Damage and Crystal Deposition.
    Xun Y; Zhou P; Yang Y; Li C; Zhang J; Hu H; Qin B; Zhang Z; Wang Q; Lu Y; Wang S
    Antioxid Redox Signal; 2022 Jan; 36(1-3):15-38. PubMed ID: 34435888
    [No Abstract]   [Full Text] [Related]  

  • 18. Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations.
    Khan SR
    J Urol; 2013 Mar; 189(3):803-11. PubMed ID: 23022011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nephrolithiasis: a consequence of renal epithelial cell exposure to oxalate and calcium oxalate crystals.
    Khan SR; Thamilselvan S
    Mol Urol; 2000; 4(4):305-12. PubMed ID: 11156696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal oxidative vulnerability due to changes in mitochondrial-glutathione and energy homeostasis in a rat model of calcium oxalate urolithiasis.
    Meimaridou E; Lobos E; Hothersall JS
    Am J Physiol Renal Physiol; 2006 Oct; 291(4):F731-40. PubMed ID: 16670437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.