These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36483955)

  • 1. Sprayer boom height measurement in wheat field using ultrasonic sensor: An exploratory study.
    Zhao X; Zhai C; Wang S; Dou H; Yang S; Wang X; Chen L
    Front Plant Sci; 2022; 13():1008122. PubMed ID: 36483955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A LiDAR Sensor-Based Spray Boom Height Detection Method and the Corresponding Experimental Validation.
    Dou H; Wang S; Zhai C; Chen L; Wang X; Zhao X
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33802785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calibrating ultrasonic sensor measurements of crop canopy heights: a case study of maize and wheat.
    Zheng Y; Hui X; Cai D; Shoukat MR; Wang Y; Wang Z; Ma F; Yan H
    Front Plant Sci; 2024; 15():1354359. PubMed ID: 38903436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Crop Canopy Localization Method Based on Ultrasonic Ranging and Iterative Self-Organizing Data Analysis Technique Algorithm.
    Li F; Bai X; Li Y
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32028735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic and LIDAR sensors for electronic canopy characterization in vineyards: advances to improve pesticide application methods.
    Llorens J; Gil E; Llop J; Escolà A
    Sensors (Basel); 2011; 11(2):2177-94. PubMed ID: 22319405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wheat Height Estimation Using LiDAR in Comparison to Ultrasonic Sensor and UAS.
    Yuan W; Li J; Bhatta M; Shi Y; Baenziger PS; Ge Y
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of an ultrasonic ranging sensor in apple tree canopies.
    Escolà A; Planas S; Rosell JR; Pomar J; Camp F; Solanelles F; Gracia F; Llorens J; Gil E
    Sensors (Basel); 2011; 11(3):2459-77. PubMed ID: 22163749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terrestrial 3D laser scanning to track the increase in canopy height of both monocot and dicot crop species under field conditions.
    Friedli M; Kirchgessner N; Grieder C; Liebisch F; Mannale M; Walter A
    Plant Methods; 2016; 12():9. PubMed ID: 26834822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Canopy Density Model for Planar Orchard Target Detection Based on Ultrasonic Sensors.
    Li H; Zhai C; Weckler P; Wang N; Yang S; Zhang B
    Sensors (Basel); 2016 Dec; 17(1):. PubMed ID: 28029132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of an intelligent artificial climate chamber for high-throughput crop phenotyping in wheat.
    Ren A; Jiang D; Kang M; Wu J; Xiao F; Hou P; Fu X
    Plant Methods; 2022 Jun; 18(1):77. PubMed ID: 35672714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Structure characteristics of soil and canopy and their relationships in wheat field under different tillage and application of organic fertilizer.].
    Zhang DJ; Zhang YY; Wang YJ; Chen QQ; Yang HL; Ma JH; Li CX
    Ying Yong Sheng Tai Xue Bao; 2018 Feb; 29(2):538-546. PubMed ID: 29692069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of fruit tree canopy shading on grain filling of intercropping winter wheat.
    Zhang W; Han SA; Wang M; Alemujiang A; Pan MQ; Aiermaike CA; Zhang P; Xie H
    Ying Yong Sheng Tai Xue Bao; 2021 Jul; 32(7):2458-2468. PubMed ID: 34313064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Land-based crop phenotyping by image analysis: Accurate estimation of canopy height distributions using stereo images.
    Cai J; Kumar P; Chopin J; Miklavcic SJ
    PLoS One; 2018; 13(5):e0196671. PubMed ID: 29795568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of biomass and canopy height in bermudagrass, alfalfa, and wheat using ultrasonic, laser, and spectral sensors.
    Pittman JJ; Arnall DB; Interrante SM; Moffet CA; Butler TJ
    Sensors (Basel); 2015 Jan; 15(2):2920-43. PubMed ID: 25635415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ultrasonic system for weed detection in cereal crops.
    Andújar D; Weis M; Gerhards R
    Sensors (Basel); 2012 Dec; 12(12):17343-57. PubMed ID: 23443401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ETH field phenotyping platform FIP: a cable-suspended multi-sensor system.
    Kirchgessner N; Liebisch F; Yu K; Pfeifer J; Friedli M; Hund A; Walter A
    Funct Plant Biol; 2016 Feb; 44(1):154-168. PubMed ID: 32480554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Canopy photosynthesis of six major arable crops is enhanced under diffuse light due to canopy architecture.
    Emmel C; D'Odorico P; Revill A; Hörtnagl L; Ammann C; Buchmann N; Eugster W
    Glob Chang Biol; 2020 Sep; 26(9):5164-5177. PubMed ID: 32557891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UAV-Borne Dual-Band Sensor Method for Monitoring Physiological Crop Status.
    Yao L; Wang Q; Yang J; Zhang Y; Zhu Y; Cao W; Ni J
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and experimental analysis of a small integrated edge navigation sensor based on principle of circular arc array.
    Xie B; Liu J; Jiang H; Cai L; Liu L; Li Y
    Front Plant Sci; 2022; 13():892388. PubMed ID: 35991398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Peanut Canopy Measurement System Using a Ground-Based LiDAR Sensor.
    Yuan H; Bennett RS; Wang N; Chamberlin KD
    Front Plant Sci; 2019; 10():203. PubMed ID: 30873193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.