These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 36483970)

  • 21. CRISPR/Cas9-Mediated Multiplex Genome Editing of the
    Sun Q; Lin L; Liu D; Wu D; Fang Y; Wu J; Wang Y
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30208656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents.
    Yang Q; Fan C; Guo Z; Qin J; Wu J; Li Q; Fu T; Zhou Y
    Theor Appl Genet; 2012 Aug; 125(4):715-29. PubMed ID: 22534790
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increasing Monounsaturated Fatty Acid Contents in Hexaploid
    Lee KR; Jeon I; Yu H; Kim SG; Kim HS; Ahn SJ; Lee J; Lee SK; Kim HU
    Front Plant Sci; 2021; 12():702930. PubMed ID: 34267775
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR/Cas9-Targeted Mutagenesis of
    Liu Y; Du Z; Lin S; Li H; Lu S; Guo L; Tang S
    Front Plant Sci; 2022; 13():848723. PubMed ID: 35222498
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.).
    Hu X; Sullivan-Gilbert M; Gupta M; Thompson SA
    Theor Appl Genet; 2006 Aug; 113(3):497-507. PubMed ID: 16767448
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR/Cas9 Based Site-Specific Modification of FAD2
    Neelakandan AK; Wright DA; Traore SM; Chen X; Spalding MH; He G
    Front Genet; 2022; 13():849961. PubMed ID: 35571035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Construction and Analysis of
    Wu N; Lu Q; Wang P; Zhang Q; Zhang J; Qu J; Wang N
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32046096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeted mutagenesis of BnTT8 homologs controls yellow seed coat development for effective oil production in Brassica napus L.
    Zhai Y; Yu K; Cai S; Hu L; Amoo O; Xu L; Yang Y; Ma B; Jiao Y; Zhang C; Khan MHU; Khan SU; Fan C; Zhou Y
    Plant Biotechnol J; 2020 May; 18(5):1153-1168. PubMed ID: 31637846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development and screening of EMS mutants with altered seed oil content or fatty acid composition in Brassica napus.
    Tang S; Liu DX; Lu S; Yu L; Li Y; Lin S; Li L; Du Z; Liu X; Li X; Ma W; Yang QY; Guo L
    Plant J; 2020 Dec; 104(5):1410-1422. PubMed ID: 33048384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Marker assisted selection of new high oleic and low linolenic winter oilseed rape (Brassica napus L.) inbred lines revealing good agricultural value.
    Spasibionek S; Mikołajczyk K; Ćwiek-Kupczyńska H; Piętka T; Krótka K; Matuszczak M; Nowakowska J; Michalski K; Bartkowiak-Broda I
    PLoS One; 2020; 15(6):e0233959. PubMed ID: 32497146
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel type of Brassica napus with higher stearic acid in seeds developed through genome editing of BnaSAD2 family.
    Huang H; Ahmar S; Samad RA; Qin P; Yan T; Zhao Q; Xie K; Zhang C; Fan C; Zhou Y
    Theor Appl Genet; 2023 Aug; 136(9):187. PubMed ID: 37572171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.).
    Jiang C; Shi J; Li R; Long Y; Wang H; Li D; Zhao J; Meng J
    Theor Appl Genet; 2014 Apr; 127(4):957-68. PubMed ID: 24504552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved fatty acid composition of field cress (
    Sandgrind S; Li X; Ivarson E; Wang ES; Guan R; Kanagarajan S; Zhu LH
    Front Plant Sci; 2023; 14():1076704. PubMed ID: 36755695
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of high oleic/low linoleic rice by genome editing.
    Abe K; Araki E; Suzuki Y; Toki S; Saika H
    Plant Physiol Biochem; 2018 Oct; 131():58-62. PubMed ID: 29735369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The control of seed oil polyunsaturate content in the polyploid crop species
    Wells R; Trick M; Soumpourou E; Clissold L; Morgan C; Werner P; Gibbard C; Clarke M; Jennaway R; Bancroft I
    Mol Breed; 2014; 33(2):349-362. PubMed ID: 24489479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characteristics of Metabolites by Seed-Specific Inhibition of
    Zhou C; Pan W; Peng Q; Chen Y; Zhou T; Wu C; Hartley W; Li J; Xu M; Liu C; Li P; Rao L; Wang Q
    J Agric Food Chem; 2021 May; 69(19):5452-5462. PubMed ID: 33969684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutating
    Gu J; Chen J; Zhao C; Hong D
    Mol Breed; 2023 Nov; 43(11):79. PubMed ID: 37954031
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Induction of Male Sterility by Targeted Mutation of a Restorer-of-Fertility Gene with CRISPR/Cas9-Mediated Genome Editing in
    Farooq Z; Nouman Riaz M; Farooq MS; Li Y; Wang H; Ahmad M; Tu J; Ma C; Dai C; Wen J; Shen J; Fu T; Yang S; Wang B; Yi B
    Plants (Basel); 2022 Dec; 11(24):. PubMed ID: 36559613
    [No Abstract]   [Full Text] [Related]  

  • 39. Targeted editing of multiple homologues of GTR1 and GTR2 genes provides the ideal low-seed, high-leaf glucosinolate oilseed mustard with uncompromised defence and yield.
    Mann A; Kumari J; Kumar R; Kumar P; Pradhan AK; Pental D; Bisht NC
    Plant Biotechnol J; 2023 Nov; 21(11):2182-2195. PubMed ID: 37539488
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR-Cas9 Targeted Mutagenesis Leads to Simultaneous Modification of Different Homoeologous Gene Copies in Polyploid Oilseed Rape (
    Braatz J; Harloff HJ; Mascher M; Stein N; Himmelbach A; Jung C
    Plant Physiol; 2017 Jun; 174(2):935-942. PubMed ID: 28584067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.