These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 36484105)

  • 41. Characterization of mammalian ADP-ribosylation cycles.
    Okazaki IJ; Zolkiewska A; Takada T; Moss J
    Biochimie; 1995; 77(5):319-25. PubMed ID: 8527484
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CD38 controls ADP-ribosyltransferase-2-catalyzed ADP-ribosylation of T cell surface proteins.
    Krebs C; Adriouch S; Braasch F; Koestner W; Leiter EH; Seman M; Lund FE; Oppenheimer N; Haag F; Koch-Nolte F
    J Immunol; 2005 Mar; 174(6):3298-305. PubMed ID: 15749861
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA.
    Navratil T; Spremulli LL
    Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A cell-permeable fusion toxin as a tool to study the consequences of actin-ADP-ribosylation caused by the salmonella enterica virulence factor SpvB in intact cells.
    Pust S; Hochmann H; Kaiser E; von Figura G; Heine K; Aktories K; Barth H
    J Biol Chem; 2007 Apr; 282(14):10272-82. PubMed ID: 17283073
    [TBL] [Abstract][Full Text] [Related]  

  • 45. NAD binding induces conformational changes in Rho ADP-ribosylating clostridium botulinum C3 exoenzyme.
    Ménétrey J; Flatau G; Stura EA; Charbonnier JB; Gas F; Teulon JM; Le Du MH; Boquet P; Menez A
    J Biol Chem; 2002 Aug; 277(34):30950-7. PubMed ID: 12029083
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanism of threonine ADP-ribosylation of F-actin by a Tc toxin.
    Belyy A; Lindemann F; Roderer D; Funk J; Bardiaux B; Protze J; Bieling P; Oschkinat H; Raunser S
    Nat Commun; 2022 Jul; 13(1):4202. PubMed ID: 35858890
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural basis of actin recognition and arginine ADP-ribosylation by Clostridium perfringens iota-toxin.
    Tsuge H; Nagahama M; Oda M; Iwamoto S; Utsunomiya H; Marquez VE; Katunuma N; Nishizawa M; Sakurai J
    Proc Natl Acad Sci U S A; 2008 May; 105(21):7399-404. PubMed ID: 18490658
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural basis for lack of ADP-ribosyltransferase activity in poly(ADP-ribose) polymerase-13/zinc finger antiviral protein.
    Karlberg T; Klepsch M; Thorsell AG; Andersson CD; Linusson A; Schüler H
    J Biol Chem; 2015 Mar; 290(12):7336-44. PubMed ID: 25635049
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Generating Protein-Linked and Protein-Free Mono-, Oligo-, and Poly(ADP-Ribose) In Vitro.
    Lin KY; Huang D; Kraus WL
    Methods Mol Biol; 2018; 1813():91-108. PubMed ID: 30097863
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mono-ADP-Ribosylation Catalyzed by Arginine-Specific ADP-Ribosyltransferases.
    Stevens LA; Moss J
    Methods Mol Biol; 2018; 1813():149-165. PubMed ID: 30097866
    [TBL] [Abstract][Full Text] [Related]  

  • 51. ART2, a T cell surface mono-ADP-ribosyltransferase, generates extracellular poly(ADP-ribose).
    Morrison AR; Moss J; Stevens LA; Evans JE; Farrell C; Merithew E; Lambright DG; Greiner DL; Mordes JP; Rossini AA; Bortell R
    J Biol Chem; 2006 Nov; 281(44):33363-72. PubMed ID: 16931513
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Actin is ADP-ribosylated by the Salmonella enterica virulence-associated protein SpvB.
    Tezcan-Merdol D; Nyman T; Lindberg U; Haag F; Koch-Nolte F; Rhen M
    Mol Microbiol; 2001 Feb; 39(3):606-19. PubMed ID: 11169102
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cloning and characterization of a novel membrane-associated lymphocyte NAD:arginine ADP-ribosyltransferase.
    Okazaki IJ; Kim HJ; Moss J
    J Biol Chem; 1996 Sep; 271(36):22052-7. PubMed ID: 8703012
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Substrate recognition by the
    Kuiper EG; Dey D; LaMore PA; Owings JP; Prezioso SM; Goldberg JB; Conn GL
    J Biol Chem; 2019 Dec; 294(52):20109-20121. PubMed ID: 31753919
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Properties of isolated domains of the elongation factor Tu from Thermus thermophilus HB8.
    Nock S; Grillenbeck N; Ahmadian MR; Ribeiro S; Kreutzer R; Sprinzl M
    Eur J Biochem; 1995 Nov; 234(1):132-9. PubMed ID: 8529632
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Overview of the mammalian ADP-ribosyl-transferases clostridia toxin-like (ARTCs) family.
    Di Girolamo M; Fabrizio G
    Biochem Pharmacol; 2019 Sep; 167():86-96. PubMed ID: 31283932
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Toward a unified nomenclature for mammalian ADP-ribosyltransferases.
    Hottiger MO; Hassa PO; Lüscher B; Schüler H; Koch-Nolte F
    Trends Biochem Sci; 2010 Apr; 35(4):208-19. PubMed ID: 20106667
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Macromolecular mimicry in protein biosynthesis.
    Nyborg J; Nissen P; Kjeldgaard M; Thirup S; Polekhina G; Clark BF; Reshetnikova L
    Fold Des; 1997; 2(3):S7-11. PubMed ID: 9218959
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Doc toxin is a kinase that inactivates elongation factor Tu.
    Cruz JW; Rothenbacher FP; Maehigashi T; Lane WS; Dunham CM; Woychik NA
    J Biol Chem; 2014 Mar; 289(11):7788-98. PubMed ID: 24448800
    [TBL] [Abstract][Full Text] [Related]  

  • 60. ADP-ribosyltransferases and poly ADP-ribosylation.
    Liu C; Yu X
    Curr Protein Pept Sci; 2015; 16(6):491-501. PubMed ID: 25938242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.