BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36484355)

  • 1. Myxococcus xanthus as Host for the Production of Benzoxazoles.
    Winand L; Lernoud L; Meyners SA; Kuhr K; Hiller W; Nett M
    Chembiochem; 2023 Mar; 24(5):e202200635. PubMed ID: 36484355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Pseudochelin Production in Myxococcus xanthus.
    Korp J; Winand L; Sester A; Nett M
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30217842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the biocombinatorial potential of benzoxazoles: generation of novel caboxamycin derivatives.
    Losada AA; Méndez C; Salas JA; Olano C
    Microb Cell Fact; 2017 May; 16(1):93. PubMed ID: 28545544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome Mining of Streptomyces sp. Tü 6176: Characterization of the Nataxazole Biosynthesis Pathway.
    Cano-Prieto C; García-Salcedo R; Sánchez-Hidalgo M; Braña AF; Fiedler HP; Méndez C; Salas JA; Olano C
    Chembiochem; 2015 Jul; 16(10):1461-73. PubMed ID: 25892546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron competition triggers antibiotic biosynthesis in Streptomyces coelicolor during coculture with Myxococcus xanthus.
    Lee N; Kim W; Chung J; Lee Y; Cho S; Jang KS; Kim SC; Palsson B; Cho BK
    ISME J; 2020 May; 14(5):1111-1124. PubMed ID: 31992858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ROK like protein of Myxococcus xanthus DK1622 acts as a pleiotropic transcriptional regulator for secondary metabolism.
    Izzat S; Rachid S; Ajdidi A; El-Nakady YA; Liu XX; Ye BC; Müller R
    J Biotechnol; 2020 Mar; 311():25-34. PubMed ID: 32057784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myxochelin- and Pseudochelin-Derived Lipoxygenase Inhibitors from a Genetically Engineered
    Sester A; Winand L; Pace S; Hiller W; Werz O; Nett M
    J Nat Prod; 2019 Sep; 82(9):2544-2549. PubMed ID: 31465225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crosstalk of Nataxazole Pathway with Chorismate-Derived Ionophore Biosynthesis Pathways in Streptomyces sp. Tü 6176.
    Cano-Prieto C; Losada AA; Braña AF; Méndez C; Salas JA; Olano C
    Chembiochem; 2015 Sep; 16(13):1925-1932. PubMed ID: 26083234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nataxazole, a new benzoxazole derivative with antitumor activity produced by Streptomyces sp. Tü 6176.
    Sommer PS; Almeida RC; Schneider K; Beil W; Süssmuth RD; Fiedler HP
    J Antibiot (Tokyo); 2008 Nov; 61(11):683-6. PubMed ID: 19168984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstitution of the myxothiazol biosynthetic gene cluster by Red/ET recombination and heterologous expression in Myxococcus xanthus.
    Perlova O; Fu J; Kuhlmann S; Krug D; Stewart AF; Zhang Y; Müller R
    Appl Environ Microbiol; 2006 Dec; 72(12):7485-94. PubMed ID: 16997979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Biosynthesis of the Benzoxazole in Nataxazole Proceeds via an Unstable Ester and has Synthetic Utility.
    Song H; Rao C; Deng Z; Yu Y; Naismith JH
    Angew Chem Int Ed Engl; 2020 Apr; 59(15):6054-6061. PubMed ID: 31903677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous expression of epothilone biosynthetic genes in Myxococcus xanthus.
    Julien B; Shah S
    Antimicrob Agents Chemother; 2002 Sep; 46(9):2772-8. PubMed ID: 12183227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Orphan MbtH-Like Protein Interacts with Multiple Nonribosomal Peptide Synthetases in Myxococcus xanthus DK1622.
    Esquilín-Lebrón KJ; Boynton TO; Shimkets LJ; Thomas MG
    J Bacteriol; 2018 Nov; 200(21):. PubMed ID: 30126939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterologous expression of the oxytetracycline biosynthetic pathway in Myxococcus xanthus.
    Stevens DC; Henry MR; Murphy KA; Boddy CN
    Appl Environ Microbiol; 2010 Apr; 76(8):2681-3. PubMed ID: 20208031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic redundancy, proximity, and functionality of lspA, the target of antibiotic TA, in the Myxococcus xanthus producer strain.
    Xiao Y; Wall D
    J Bacteriol; 2014 Mar; 196(6):1174-83. PubMed ID: 24391051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the Exopolysaccharide Biosynthesis Pathway in Myxococcus xanthus.
    Pérez-Burgos M; García-Romero I; Jung J; Schander E; Valvano MA; Søgaard-Andersen L
    J Bacteriol; 2020 Sep; 202(19):. PubMed ID: 32778557
    [No Abstract]   [Full Text] [Related]  

  • 17. Identification of the lipopolysaccharide O-antigen biosynthesis priming enzyme and the O-antigen ligase in Myxococcus xanthus: critical role of LPS O-antigen in motility and development.
    Pérez-Burgos M; García-Romero I; Jung J; Valvano MA; Søgaard-Andersen L
    Mol Microbiol; 2019 Oct; 112(4):1178-1198. PubMed ID: 31332863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MglC, a Paralog of Myxococcus xanthus GTPase-Activating Protein MglB, Plays a Divergent Role in Motility Regulation.
    McLoon AL; Wuichet K; Häsler M; Keilberg D; Szadkowski D; Søgaard-Andersen L
    J Bacteriol; 2016 Feb; 198(3):510-20. PubMed ID: 26574508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-component systems and regulation of developmental progression in Myxococcus xanthus.
    Lee B; Schramm A; Jagadeesan S; Higgs PI
    Methods Enzymol; 2010; 471():253-78. PubMed ID: 20946852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allopatric integrations selectively change host transcriptomes, leading to varied expression efficiencies of exotic genes in Myxococcus xanthus.
    Zhu LP; Yue XJ; Han K; Li ZF; Zheng LS; Yi XN; Wang HL; Zhang YM; Li YZ
    Microb Cell Fact; 2015 Jul; 14():105. PubMed ID: 26194479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.