These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36484421)

  • 1. The mechanical response and microscopic deformation mechanism of graphene foams tuned by long carbon nanotubes and short crosslinkers.
    Wang S; Yang T; Wang C; Liang L
    Phys Chem Chem Phys; 2022 Dec; 25(1):192-202. PubMed ID: 36484421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscopic deformation mechanism and main influencing factors of carbon nanotube coated graphene foams under uniaxial compression.
    Wang S; Wang C; Khan MB; Chen S
    Nanotechnology; 2021 Jun; 32(34):. PubMed ID: 34081029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical Properties and Deformation Mechanisms of Graphene Foams with Bi-Modal Sheet Thickness by Coarse-Grained Molecular Dynamics Simulations.
    Liu S; Lyu M; Wang C
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of Viscoelastic Properties of Graphene Foams Using Dynamic Mechanical Analysis and Coarse-Grained Molecular Dynamics Simulations.
    Liu S; Lyu M; Yang C; Jiang M; Wang C
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain Hardening in Graphene Foams under Shear.
    Yang T; Wang C; Wu Z
    ACS Omega; 2021 Sep; 6(35):22780-22790. PubMed ID: 34514249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chirality-Dependent Mechanical Properties of Bundles and Thin Films Composed of Covalently Cross-Linked Carbon Nanotubes.
    Kayang KW; Banna AH; Volkov AN
    Langmuir; 2022 Feb; 38(6):1977-1994. PubMed ID: 35104409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties of CNT-reinforced Ni
    Wang Z; Yang F; Shang J; Wei N; Kou L; Li C
    J Phys Condens Matter; 2020 May; 32(20):205301. PubMed ID: 31935697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifying the morphology and properties of aligned CNT foams through secondary CNT growth.
    Faraji S; Stano K; Akyildiz H; Yildiz O; Jur JS; Bradford PD
    Nanotechnology; 2018 Jul; 29(29):295602. PubMed ID: 29697060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conductivity Maximum in 3D Graphene Foams.
    Liu F; Wang C; Tang Q
    Small; 2018 Aug; 14(32):e1801458. PubMed ID: 30015367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of carbon nanotubes/chitosan composite foam with enhanced elastic property.
    Yan J; Wu T; Ding Z; Li X
    Carbohydr Polym; 2016 Jan; 136():1288-96. PubMed ID: 26572473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the Nanotube Radius and the Volume Fraction on the Mechanical Properties of Carbon Nanotube-Reinforced Aluminum Metal Matrix Composites.
    Suk ME
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34203387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical Properties of Graphene Networks under Compression: A Molecular Dynamics Simulation.
    Polyakova PV; Baimova JA
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Combination of Enhanced Mechanical and Electromagnetic Shielding Properties of Carbon Nanotubes Reinforced Cu-Ni Composite Foams.
    Wang D; Wu Z; Li F; Gan X; Tao J; Yi J; Liu Y
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating the effects of carbon nanotube continuity and interfacial bonding on composite strength and stiffness.
    Jensen BD; Odegard GM; Kim JW; Sauti G; Siochi EJ; Wise KE
    Compos Sci Technol; 2018 Sep; 166():10-19. PubMed ID: 31359899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic Effects of Graphene/Carbon Nanotubes Hybrid Coating on the Interfacial and Mechanical Properties of Fiber Composites.
    Qin W; Chen C; Zhou J; Meng J
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32210044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers.
    Liu H; Gao J; Huang W; Dai K; Zheng G; Liu C; Shen C; Yan X; Guo J; Guo Z
    Nanoscale; 2016 Jul; 8(26):12977-89. PubMed ID: 27304516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatible, Electroconductive, and Highly Stretchable Hybrid Silicone Composites Based on Few-Layer Graphene and CNTs.
    Barshutina MN; Volkov VS; Arsenin AV; Yakubovsky DI; Melezhik AV; Blokhin AN; Tkachev AG; Lopachev AV; Kondrashov VA
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33924905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites.
    Estili M; Sakka Y
    Sci Technol Adv Mater; 2014 Dec; 15(6):064902. PubMed ID: 27877730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial Bonding Improvement through Nickel Decoration on Carbon Nanotubes in Carbon Nanotubes/Cu Composite Foams Reinforced Copper Matrix Composites.
    Wang D; Yan A; Liu Y; Wu Z; Gan X; Li F; Tao J; Li C; Yi J
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35893516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of CNTs Additives on the Energy Balance of Carbon/Epoxy Nanocomposites during Dynamic Compression Test.
    Chihi M; Tarfaoui M; Bouraoui C; El Moumen A
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31940768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.