These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 36484422)

  • 1. Portable general microfluidic device with complex electric field regulation functions for electrokinetic experiments.
    Guo W; Tao Y; Mao K; Liu W; Xue R; Ge Z; Ren Y
    Lab Chip; 2022 Dec; 23(1):157-167. PubMed ID: 36484422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A visual portable microfluidic experimental device with multiple electric field regulation functions.
    Guo W; Tao Y; Liu W; Song C; Zhou J; Jiang H; Ren Y
    Lab Chip; 2022 Apr; 22(8):1556-1564. PubMed ID: 35352749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in direct current electrokinetic manipulation of particles for microfluidic applications.
    Xuan X
    Electrophoresis; 2019 Sep; 40(18-19):2484-2513. PubMed ID: 30816561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electric stimulation system for electrokinetic particle manipulation in microfluidic devices.
    Lopez-de la Fuente MS; Moncada-Hernandez H; Perez-Gonzalez VH; Lapizco-Encinas BH; Martinez-Chapa SO
    Rev Sci Instrum; 2013 Mar; 84(3):035103. PubMed ID: 23556848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward low-voltage dielectrophoresis-based microfluidic systems: A review.
    Ramirez-Murillo CJ; de Los Santos-Ramirez JM; Perez-Gonzalez VH
    Electrophoresis; 2021 Mar; 42(5):565-587. PubMed ID: 33166414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A smart and portable micropump for stable liquid delivery.
    Zhang X; Xia K; Ji A; Xiang N
    Electrophoresis; 2019 Mar; 40(6):865-872. PubMed ID: 30628114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis.
    Lin SC; Lu JC; Sung YL; Lin CT; Tung YC
    Lab Chip; 2013 Aug; 13(15):3082-9. PubMed ID: 23753015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review of nonlinear electrokinetic flows in insulator-based dielectrophoresis: From induced charge to Joule heating effects.
    Xuan X
    Electrophoresis; 2022 Jan; 43(1-2):167-189. PubMed ID: 33991344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review: Electric field driven pumping in microfluidic device.
    Hossan MR; Dutta D; Islam N; Dutta P
    Electrophoresis; 2018 Mar; 39(5-6):702-731. PubMed ID: 29130508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Study of Particle-Fluid Flow Under AC Electrokinetics in Electrode-Multilayered Microfluidic Device.
    Sato N; Yao J; Sugawara M; Takei M
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):453-463. PubMed ID: 29993454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A systematic overview of electrode configuration in electric-driven micropumps.
    Tavari T; Nazari M; Meamardoost S; Tamayol A; Samandari M
    Electrophoresis; 2022 Jul; 43(13-14):1476-1520. PubMed ID: 35452525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrified lab on disc systems: A comprehensive review on electrokinetic applications.
    Kordzadeh-Kermani V; Madadelahi M; Ashrafizadeh SN; Kulinsky L; Martinez-Chapa SO; Madou MJ
    Biosens Bioelectron; 2022 Oct; 214():114381. PubMed ID: 35820257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle trapping in electrically driven insulator-based microfluidics: Dielectrophoresis and induced-charge electrokinetics.
    Perez-Gonzalez VH
    Electrophoresis; 2021 Dec; 42(23):2445-2464. PubMed ID: 34081787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A portable and integrated instrument for cell manipulation by dielectrophoresis.
    Burgarella S; Di Bari M
    Electrophoresis; 2015 Jul; 36(13):1466-70. PubMed ID: 25808778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication, Flow Control, and Applications of Microfluidic Paper-Based Analytical Devices.
    Lim H; Jafry AT; Lee J
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31394856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal-Based Methods in Dielectrophoresis for Cell and Particle Separation.
    Farasat M; Aalaei E; Kheirati Ronizi S; Bakhshi A; Mirhosseini S; Zhang J; Nguyen NT; Kashaninejad N
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical and experimental evaluation of microfluidic sorting devices.
    Taylor JK; Ren CL; Stubley GD
    Biotechnol Prog; 2008; 24(4):981-91. PubMed ID: 19194907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidics in structured multimaterial fibers.
    Yuan R; Lee J; Su HW; Levy E; Khudiyev T; Voldman J; Fink Y
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10830-E10838. PubMed ID: 30373819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of active and passive hybrid systems based on Dielectrophoresis for the manipulation of microparticles.
    Al-Ali A; Waheed W; Abu-Nada E; Alazzam A
    J Chromatogr A; 2022 Aug; 1676():463268. PubMed ID: 35779391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A portable microfluidic device for thermally controlled granular sample manipulation.
    Zhang K; Xiang W; Jia N; Yu M; Liu J; Xie Z
    Lab Chip; 2024 Jan; 24(3):549-560. PubMed ID: 38168724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.