BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36484635)

  • 1. Functional regulation of Wnt protein through post-translational modifications.
    Yu J; Virshup DM
    Biochem Soc Trans; 2022 Dec; 50(6):1797-1808. PubMed ID: 36484635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gone with the Wnt(less): a mechanistic perspective on the journey of Wnt.
    Mani N; Nygaard R; Mancia F
    Biochem Soc Trans; 2022 Dec; 50(6):1763-1772. PubMed ID: 36416660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of Porcupine and Wntless proteins to oxidative, hypoxic and endoplasmic reticulum stresses.
    Mohamed R; Kennedy C; Willmore WG
    Cell Signal; 2021 Sep; 85():110047. PubMed ID: 34015469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereoselective fatty acylation is essential for the release of lipidated WNT proteins from the acyltransferase Porcupine (PORCN).
    Tuladhar R; Yarravarapu N; Ma Y; Zhang C; Herbert J; Kim J; Chen C; Lum L
    J Biol Chem; 2019 Apr; 294(16):6273-6282. PubMed ID: 30737280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of Evi/Wntless in exporting Wnt proteins.
    Wolf L; Boutros M
    Development; 2023 Feb; 150(3):. PubMed ID: 36763105
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Lee CJ; Rana MS; Bae C; Li Y; Banerjee A
    J Biol Chem; 2019 Jan; 294(1):231-245. PubMed ID: 30420431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of key residues and regions important for porcupine-mediated Wnt acylation.
    Rios-Esteves J; Haugen B; Resh MD
    J Biol Chem; 2014 Jun; 289(24):17009-19. PubMed ID: 24798332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The logistics of Wnt production and delivery.
    Alvarez-Rodrigo I; Willnow D; Vincent JP
    Curr Top Dev Biol; 2023; 153():1-60. PubMed ID: 36967191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The apical and basolateral secretion of Wnt11 and Wnt3a in polarized epithelial cells is regulated by different mechanisms.
    Yamamoto H; Awada C; Hanaki H; Sakane H; Tsujimoto I; Takahashi Y; Takao T; Kikuchi A
    J Cell Sci; 2013 Jul; 126(Pt 13):2931-43. PubMed ID: 23613470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porcupine-mediated lipidation is required for Wnt recognition by Wls.
    Herr P; Basler K
    Dev Biol; 2012 Jan; 361(2):392-402. PubMed ID: 22108505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wnt traffic from endoplasmic reticulum to filopodia.
    Moti N; Yu J; Boncompain G; Perez F; Virshup DM
    PLoS One; 2019; 14(2):e0212711. PubMed ID: 30794657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulating Wnt signaling at the root: Porcupine and Wnt acylation.
    Torres VI; Godoy JA; Inestrosa NC
    Pharmacol Ther; 2019 Jun; 198():34-45. PubMed ID: 30790642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Basis of WLS/Evi-Mediated Wnt Transport and Secretion.
    Nygaard R; Yu J; Kim J; Ross DR; Parisi G; Clarke OB; Virshup DM; Mancia F
    Cell; 2021 Jan; 184(1):194-206.e14. PubMed ID: 33357447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Making, Exporting, and Modulating Wnts.
    Langton PF; Kakugawa S; Vincent JP
    Trends Cell Biol; 2016 Oct; 26(10):756-765. PubMed ID: 27325141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular carriers control lipid-dependent secretion, delivery, and activity of WNT morphogens.
    de Almeida Magalhaes T; Liu J; Chan C; Borges KS; Zhang J; Kane AJ; Wierbowski BM; Ge Y; Liu Z; Mannam P; Zeve D; Weiss R; Breault DT; Huang P; Salic A
    Dev Cell; 2024 Jan; 59(2):244-261.e6. PubMed ID: 38154460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for Studying Wnt Protein Modifications/Inactivations by Extracellular Enzymes, Tiki and Notum.
    Zhang X; He X
    Methods Mol Biol; 2016; 1481():29-38. PubMed ID: 27590149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An
    Asciolla JJ; Miele MM; Hendrickson RC; Resh MD
    J Biol Chem; 2017 Aug; 292(33):13507-13513. PubMed ID: 28655768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divergent effects of Porcupine and Wntless on WNT1 trafficking, secretion, and signaling.
    Galli LM; Zebarjadi N; Li L; Lingappa VR; Burrus LW
    Exp Cell Res; 2016 Sep; 347(1):171-183. PubMed ID: 27492485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular basis of Wnt biogenesis, secretion, and Wnt7-specific signaling.
    Qi X; Hu Q; Elghobashi-Meinhardt N; Long T; Chen H; Li X
    Cell; 2023 Nov; 186(23):5028-5040.e14. PubMed ID: 37852257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of Porcupine impairs convergent extension during gastrulation in zebrafish.
    Chen Q; Takada R; Takada S
    J Cell Sci; 2012 May; 125(Pt 9):2224-34. PubMed ID: 22357957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.