These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 36484932)
1. Ultralow Interfacial Thermal Resistance of Graphene Thermal Interface Materials with Surface Metal Liquefaction. Dai W; Ren XJ; Yan Q; Wang S; Yang M; Lv L; Ying J; Chen L; Tao P; Sun L; Xue C; Yu J; Song C; Nishimura K; Jiang N; Lin CT Nanomicro Lett; 2022 Dec; 15(1):9. PubMed ID: 36484932 [TBL] [Abstract][Full Text] [Related]
2. Metal-Level Thermally Conductive yet Soft Graphene Thermal Interface Materials. Dai W; Ma T; Yan Q; Gao J; Tan X; Lv L; Hou H; Wei Q; Yu J; Wu J; Yao Y; Du S; Sun R; Jiang N; Wang Y; Kong J; Wong C; Maruyama S; Lin CT ACS Nano; 2019 Oct; 13(10):11561-11571. PubMed ID: 31550125 [TBL] [Abstract][Full Text] [Related]
3. Surface Modification Using Polydopamine-Coated Liquid Metal Nanocapsules for Improving Performance of Graphene Paper-Based Thermal Interface Materials. Gao J; Yan Q; Tan X; Lv L; Ying J; Zhang X; Yang M; Du S; Wei Q; Xue C; Li H; Yu J; Lin CT; Dai W; Jiang N Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34067230 [TBL] [Abstract][Full Text] [Related]
4. Scalable Compliant Graphene Fiber-Based Thermal Interface Material with Metal-Level Thermal Conductivity via Dual-Field Synergistic Alignment Engineering. Lu J; Ming X; Cao M; Liu Y; Wang B; Shi H; Hao Y; Zhang P; Li K; Wang L; Li P; Gao W; Cai S; Sun B; Yu ZZ; Xu Z; Gao C ACS Nano; 2024 Jul; 18(28):18560-18571. PubMed ID: 38941591 [TBL] [Abstract][Full Text] [Related]
5. Enhancing thermal transport of epoxy composites with vertically aligned graphene Liao J; Chen S; Huang M; Rui T; Tian ZQ; Li C Phys Chem Chem Phys; 2024 Oct; 26(39):25655-25663. PubMed ID: 39350652 [TBL] [Abstract][Full Text] [Related]
6. Vertically Aligned High-Quality Graphene Foams for Anisotropically Conductive Polymer Composites with Ultrahigh Through-Plane Thermal Conductivities. An F; Li X; Min P; Liu P; Jiang ZG; Yu ZZ ACS Appl Mater Interfaces; 2018 May; 10(20):17383-17392. PubMed ID: 29706070 [TBL] [Abstract][Full Text] [Related]
8. Regulatable Orthotropic 3D Hybrid Continuous Carbon Networks for Efficient Bi-Directional Thermal Conduction. Yu H; Peng L; Chen C; Qin M; Feng W Nanomicro Lett; 2024 May; 16(1):198. PubMed ID: 38758464 [TBL] [Abstract][Full Text] [Related]
9. Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials. Barako MT; Isaacson SG; Lian F; Pop E; Dauskardt RH; Goodson KE; Tice J ACS Appl Mater Interfaces; 2017 Dec; 9(48):42067-42074. PubMed ID: 29119783 [TBL] [Abstract][Full Text] [Related]
10. A Hierarchically Structured Graphene/Ag Nanowires Paper as Thermal Interface Material. Lv L; Ying J; Chen L; Tao P; Sun L; Yang K; Fu L; Yu J; Yan Q; Dai W; Jiang N; Lin CT Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903671 [TBL] [Abstract][Full Text] [Related]
11. A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials. Liang Q; Yao X; Wang W; Liu Y; Wong CP ACS Nano; 2011 Mar; 5(3):2392-401. PubMed ID: 21384860 [TBL] [Abstract][Full Text] [Related]
12. A Paper-Like Inorganic Thermal Interface Material Composed of Hierarchically Structured Graphene/Silicon Carbide Nanorods. Dai W; Lv L; Lu J; Hou H; Yan Q; Alam FE; Li Y; Zeng X; Yu J; Wei Q; Xu X; Wu J; Jiang N; Du S; Sun R; Xu J; Wong CP; Lin CT ACS Nano; 2019 Feb; 13(2):1547-1554. PubMed ID: 30726676 [TBL] [Abstract][Full Text] [Related]
13. Vertically Aligned Boron Nitride Nanosheets Films for Superior Electronic Cooling. Yang K; Yang X; Liu Z; Li K; Yue Y; Zhang R; Wang F; Shi X; Yuan J; Liu N; Wang G; Wang Z; Xin G ACS Appl Mater Interfaces; 2023 Jun; 15(23):28536-28545. PubMed ID: 37264810 [TBL] [Abstract][Full Text] [Related]
14. Scalable microfluidic fabrication of vertically aligned two-dimensional nanosheets for superior thermal management. Yang K; Yang X; Liu Z; Zhang R; Yue Y; Wang F; Li K; Shi X; Yuan J; Liu N; Wang Z; Wang G; Xin G Mater Horiz; 2023 Aug; 10(9):3536-3547. PubMed ID: 37272086 [TBL] [Abstract][Full Text] [Related]
15. Thermal Interface Materials with High Thermal Conductivity and Low Young's Modulus Using a Solid-Liquid Metal Codoping Strategy. Zhang XD; Zhang ZT; Wang HZ; Cao BY ACS Appl Mater Interfaces; 2023 Jan; 15(2):3534-3542. PubMed ID: 36604306 [TBL] [Abstract][Full Text] [Related]
16. 2D Materials-Based Thermal Interface Materials: Structure, Properties, and Applications. Dai W; Wang Y; Li M; Chen L; Yan Q; Yu J; Jiang N; Lin CT Adv Mater; 2024 Sep; 36(37):e2311335. PubMed ID: 38847403 [TBL] [Abstract][Full Text] [Related]
17. The Dielectrophoretic Alignment of Biphasic Metal Fillers for Thermal Interface Materials. Lee Y; Akyildiz K; Kang C; So JH; Koo HJ Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139905 [TBL] [Abstract][Full Text] [Related]
18. Vertically Aligned and Interconnected Graphite and Graphene Oxide Networks Leading to Enhanced Thermal Conductivity of Polymer Composites. Wang Z; Cao Y; Pan D; Hu S Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32422928 [TBL] [Abstract][Full Text] [Related]
19. Graphene-Based Thermal Interface Materials: An Application-Oriented Perspective on Architecture Design. Lv L; Dai W; Li A; Lin CT Polymers (Basel); 2018 Oct; 10(11):. PubMed ID: 30961126 [TBL] [Abstract][Full Text] [Related]
20. Thermal interface material with graphene enhanced sintered copper for high temperature power electronics. Deng S; Zhang X; Xiao GD; Zhang K; He X; Xin S; Liu X; Zhong A; Chai Y Nanotechnology; 2021 May; 32(31):. PubMed ID: 33910177 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]