These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 36487184)

  • 21. Pu(V) transport through Savannah River Site soils - an evaluation of a conceptual model of surface- mediated reduction to Pu (IV).
    Powell BA; Kaplan DI; Serkiz SM; Coates JT; Fjeld RA
    J Environ Radioact; 2014 May; 131():47-56. PubMed ID: 24238838
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of oxidation states on plutonium mobility during long-term transport through an unsaturated subsurface environment.
    Kaplan DI; Powell BA; Demirkanli DI; Fjeld RA; Molz FJ; Serkiz SM; Coates JT
    Environ Sci Technol; 2004 Oct; 38(19):5053-8. PubMed ID: 15506198
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flowthrough of
    Manglass LM; Vogel CM; Wintenberg M; Blenner MA; Martinez NE
    J Radiol Prot; 2023 Jan; 43(1):. PubMed ID: 36623311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving Zinc and Iron Accumulation in Maize Grains Using the Zinc and Iron Transporter ZmZIP5.
    Li S; Liu X; Zhou X; Li Y; Yang W; Chen R
    Plant Cell Physiol; 2019 Sep; 60(9):2077-2085. PubMed ID: 31165152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mediation of Zinc and Iron Accumulation in Maize by ZmIRT2, a Novel Iron-Regulated Transporter.
    Li S; Song Z; Liu X; Zhou X; Yang W; Chen J; Chen R
    Plant Cell Physiol; 2022 Apr; 63(4):521-534. PubMed ID: 35137187
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The plasma membrane proteome of maize roots grown under low and high iron conditions.
    Hopff D; Wienkoop S; Lüthje S
    J Proteomics; 2013 Oct; 91():605-18. PubMed ID: 23353019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Zea mays Fe deficiency-related 4 (ZmFDR4) functions as an iron transporter in the plastids of monocots.
    Zhang XY; Zhang X; Zhang Q; Pan XX; Yan LC; Ma XJ; Zhao WZ; Qi XT; Yin LP
    Plant J; 2017 Apr; 90(1):147-163. PubMed ID: 28103409
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparison of fallout (236)U and (239)Pu uptake by Australian vegetation.
    Froehlich MB; Dietze MM; Tims SG; Fifield LK
    J Environ Radioact; 2016 Jan; 151 Pt 3():558-62. PubMed ID: 26141188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plants as bio-monitors for Cs-137, Pu-238, Pu-239,240 and K-40 at the Savannah River Site.
    Caldwell EF; Duff MC; Ferguson CE; Coughlin DP
    J Environ Monit; 2011 May; 13(5):1410-21. PubMed ID: 21412545
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacterial Pu(V) reduction in the absence and presence of Fe(III)-NTA: modeling and experimental approach.
    Deo RP; Rittmann BE; Reed DT
    Biodegradation; 2011 Sep; 22(5):921-9. PubMed ID: 21234648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Colloidal cutin-like substances cross-linked to siderophore decomposition products mobilizing plutonium from contaminated soils.
    Xu C; Santschi PH; Zhong JY; Hatcher PG; Francis AJ; Dodge CJ; Roberts KA; Hung CC; Honeyman BD
    Environ Sci Technol; 2008 Nov; 42(22):8211-7. PubMed ID: 19068796
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.).
    Li J; Hu J; Ma C; Wang Y; Wu C; Huang J; Xing B
    Chemosphere; 2016 Sep; 159():326-334. PubMed ID: 27314633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plutonium in wildlife and soils at the Maralinga legacy site: persistence over decadal time scales.
    Johansen MP; Child DP; Davis E; Doering C; Harrison JJ; Hotchkis MA; Payne TE; Thiruvoth S; Twining JR; Wood MD
    J Environ Radioact; 2014 May; 131():72-80. PubMed ID: 24238919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic-contaminated soil with added phosphorus.
    Xia YS; Chen BD; Christie P; Smith FA; Wang YS; Li XL
    J Environ Sci (China); 2007; 19(10):1245-51. PubMed ID: 18062425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synergistic inhibitory effect of selenium, iron, and humic acid on cadmium uptake in rice (Oryza sativa L.) seedlings in hydroponic culture.
    Zhang H; Xie S; Bao Z; Carranza EJM; Tian H; Wei C
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):64652-64665. PubMed ID: 34318411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of lanthanum and cerium on the growth and mineral nutrition of corn and mungbean.
    Diatloff E; Smith FW; Asher CJ
    Ann Bot; 2008 May; 101(7):971-82. PubMed ID: 18292604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An iron-dependent and transferrin-mediated cellular uptake pathway for plutonium.
    Jensen MP; Gorman-Lewis D; Aryal B; Paunesku T; Vogt S; Rickert PG; Seifert S; Lai B; Woloschak GE; Soderholm L
    Nat Chem Biol; 2011 Jun; 7(8):560-5. PubMed ID: 21706034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Binding of ²³⁹Pu and ⁹⁰Sr to organic colloids in soil solutions: evidence from a field experiment.
    Chawla F; Steinmann P; Loizeau JL; Hassouna M; Froidevaux P
    Environ Sci Technol; 2010 Nov; 44(22):8509-14. PubMed ID: 20964354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduction of Plutonium(VI) to (V) by Hydroxamate Compounds at Environmentally Relevant pH.
    Morrison KD; Jiao Y; Kersting AB; Zavarin M
    Environ Sci Technol; 2018 Jun; 52(11):6448-6456. PubMed ID: 29767970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions of Plutonium with Pseudomonas sp. Strain EPS-1W and Its Extracellular Polymeric Substances.
    Boggs MA; Jiao Y; Dai Z; Zavarin M; Kersting AB
    Appl Environ Microbiol; 2016 Dec; 82(24):7093-7101. PubMed ID: 27694230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.