These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 36487185)
1. Modeling incomplete penetrance in long QT syndrome type 3 through ion channel heterogeneity: an in silico population study. Miller JA; Moise N; Weinberg SH Am J Physiol Heart Circ Physiol; 2023 Feb; 324(2):H179-H197. PubMed ID: 36487185 [TBL] [Abstract][Full Text] [Related]
2. Hypernatremia and intercalated disc edema synergistically exacerbate long-QT syndrome type 3 phenotype. Wu X; Hoeker GS; Blair GA; King DR; Gourdie RG; Weinberg SH; Poelzing S Am J Physiol Heart Circ Physiol; 2021 Dec; 321(6):H1042-H1055. PubMed ID: 34623182 [TBL] [Abstract][Full Text] [Related]
3. Differential calcium sensitivity in Na Abdelsayed M; Baruteau AE; Gibbs K; Sanatani S; Krahn AD; Probst V; Ruben PC J Physiol; 2017 Sep; 595(18):6165-6186. PubMed ID: 28734073 [TBL] [Abstract][Full Text] [Related]
4. The Citrus Flavonoid Hesperetin Has an Inadequate Anti-Arrhythmic Profile in the ΔKPQ Na Alvarez-Collazo J; López-Requena A; Alvarez JL; Talavera K Biomolecules; 2020 Jun; 10(6):. PubMed ID: 32599724 [TBL] [Abstract][Full Text] [Related]
5. Modeling tissue- and mutation- specific electrophysiological effects in the long QT syndrome: role of the Purkinje fiber. Iyer V; Sampson KJ; Kass RS PLoS One; 2014; 9(6):e97720. PubMed ID: 24892747 [TBL] [Abstract][Full Text] [Related]
6. Long QT syndrome caveolin-3 mutations differentially modulate K Tyan L; Foell JD; Vincent KP; Woon MT; Mesquitta WT; Lang D; Best JM; Ackerman MJ; McCulloch AD; Glukhov AV; Balijepalli RC; Kamp TJ J Physiol; 2019 Mar; 597(6):1531-1551. PubMed ID: 30588629 [TBL] [Abstract][Full Text] [Related]
8. Exploring mutation specific beta blocker pharmacology of the pathogenic late sodium channel current from patient-specific pluripotent stem cell myocytes derived from long QT syndrome mutation carriers. Comollo TW; Zou X; Zhang C; Kesters D; Hof T; Sampson KJ; Kass RS Channels (Austin); 2022 Dec; 16(1):173-184. PubMed ID: 35949058 [TBL] [Abstract][Full Text] [Related]
9. Antiarrhythmic effect of IKr activation in a cellular model of LQT3. Diness JG; Hansen RS; Nissen JD; Jespersen T; Grunnet M Heart Rhythm; 2009 Jan; 6(1):100-6. PubMed ID: 19121808 [TBL] [Abstract][Full Text] [Related]
10. Revealing the Concealed Nature of Long-QT Type 3 Syndrome. Greer-Short A; George SA; Poelzing S; Weinberg SH Circ Arrhythm Electrophysiol; 2017 Feb; 10(2):e004400. PubMed ID: 28213505 [TBL] [Abstract][Full Text] [Related]
11. Intracellular calcium attenuates late current conducted by mutant human cardiac sodium channels. Potet F; Beckermann TM; Kunic JD; George AL Circ Arrhythm Electrophysiol; 2015 Aug; 8(4):933-41. PubMed ID: 26022185 [TBL] [Abstract][Full Text] [Related]
12. A distinct molecular mechanism by which phenytoin rescues a novel long QT 3 variant. Gando I; Campana C; Tan RB; Cecchin F; Sobie EA; Coetzee WA J Mol Cell Cardiol; 2020 Jul; 144():1-11. PubMed ID: 32339567 [TBL] [Abstract][Full Text] [Related]
13. Modeling type 3 long QT syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells. Ma D; Wei H; Zhao Y; Lu J; Li G; Sahib NB; Tan TH; Wong KY; Shim W; Wong P; Cook SA; Liew R Int J Cardiol; 2013 Oct; 168(6):5277-86. PubMed ID: 23998552 [TBL] [Abstract][Full Text] [Related]
15. Phenotypic variability in LQT3 human induced pluripotent stem cell-derived cardiomyocytes and their response to antiarrhythmic pharmacologic therapy: An in silico approach. Paci M; Passini E; Severi S; Hyttinen J; Rodriguez B Heart Rhythm; 2017 Nov; 14(11):1704-1712. PubMed ID: 28756098 [TBL] [Abstract][Full Text] [Related]
16. Cardiac sodium channel mutation associated with epinephrine-induced QT prolongation and sinus node dysfunction. Chen J; Makiyama T; Wuriyanghai Y; Ohno S; Sasaki K; Hayano M; Harita T; Nishiuchi S; Yuta Yamamoto ; Ueyama T; Shimizu A; Horie M; Kimura T Heart Rhythm; 2016 Jan; 13(1):289-98. PubMed ID: 26282245 [TBL] [Abstract][Full Text] [Related]
17. Complex interactions in a novel SCN5A compound mutation associated with long QT and Brugada syndrome: Implications for Na+ channel blocking pharmacotherapy for de novo conduction disease. Liu J; Bayer JD; Aschar-Sobbi R; Wauchop M; Spears D; Gollob M; Vigmond EJ; Tsushima R; Backx PH; Chauhan VS PLoS One; 2018; 13(5):e0197273. PubMed ID: 29791480 [TBL] [Abstract][Full Text] [Related]
18. Lidocaine attenuation testing: An in vivo investigation of putative LQT3-associated variants in the SCN5A-encoded sodium channel. Anderson HN; Bos JM; Kapplinger JD; Meskill JM; Ye D; Ackerman MJ Heart Rhythm; 2017 Aug; 14(8):1173-1179. PubMed ID: 28412158 [TBL] [Abstract][Full Text] [Related]
19. Arrhythmogenic consequences of Na+ channel mutations in the transmurally heterogeneous mammalian left ventricle: analysis of the I1768V SCN5A mutation. Flaim SN; Giles WR; McCulloch AD Heart Rhythm; 2007 Jun; 4(6):768-78. PubMed ID: 17556201 [TBL] [Abstract][Full Text] [Related]
20. Action potential alternans in LQT3 syndrome: a simulation study. Alonso-Atienza F; Requena-Carrión J; Rojo-Alvarez JL; Berenfeld O; Jalife J Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():640-3. PubMed ID: 18002037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]