BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 36490239)

  • 1. Analysis and novel methods for capture of normative eye-tracking data in 2.5-month old infants.
    Gharib A; Thompson BL
    PLoS One; 2022; 17(12):e0278423. PubMed ID: 36490239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of performance on an automated visual recognition memory task in 7.5-month-old infants.
    Dzwilewski KLC; Merced-Nieves FM; Aguiar A; Korrick SA; Schantz SL
    Neurotoxicol Teratol; 2020; 81():106904. PubMed ID: 32485220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saccade dysmetria indicates attenuated visual exploration in autism spectrum disorder.
    Bast N; Mason L; Freitag CM; Smith T; Portugal AM; Poustka L; Banaschewski T; Johnson M;
    J Child Psychol Psychiatry; 2021 Feb; 62(2):149-159. PubMed ID: 32449956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basic oculomotor function is similar in young children with ASD and typically developing controls.
    Avni I; Meiri G; Michaelovski A; Menashe I; Shmuelof L; Dinstein I
    Autism Res; 2021 Dec; 14(12):2580-2591. PubMed ID: 34405961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic eye tracking based metrics for infant gaze patterns in the face-distractor competition paradigm.
    Ahtola E; Stjerna S; Yrttiaho S; Nelson CA; Leppänen JM; Vanhatalo S
    PLoS One; 2014; 9(5):e97299. PubMed ID: 24845102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infant eye and head movements toward the side opposite the cue in the anti-saccade paradigm.
    Nakagawa A; Sukigara M
    Behav Brain Funct; 2007 Jan; 3():5. PubMed ID: 17229319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Portable eye-tracking as a reliable assessment of oculomotor, cognitive and reaction time function: Normative data for 18-45 year old.
    Kullmann A; Ashmore RC; Braverman A; Mazur C; Snapp H; Williams E; Szczupak M; Murphy S; Marshall K; Crawford J; Balaban CD; Hoffer M; Kiderman A
    PLoS One; 2021; 16(11):e0260351. PubMed ID: 34807938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Eye Tracking Enables Saccade Performance Evaluation of Patients with Concussion History.
    Song A; Gabriel R; Mohiuddin O; Whitaker D; Wisely CE; Kim T
    Optom Vis Sci; 2023 Dec; 100(12):855-860. PubMed ID: 38033013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attentional synchrony and the influence of viewing task on gaze behavior in static and dynamic scenes.
    Smith TJ; Mital PK
    J Vis; 2013 Jul; 13(8):. PubMed ID: 23863509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seeing and looking: Evidence for developmental and stimulus-dependent changes in infant scanning efficiency.
    Ross-Sheehy S; Eschman B; Reynolds EE
    PLoS One; 2022; 17(9):e0274113. PubMed ID: 36112722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A low-cost robotic oculomotor simulator for assessing eye tracking accuracy in health and disease.
    Lotze A; Love K; Velisar A; Shanidze NM
    Behav Res Methods; 2024 Jan; 56(1):80-92. PubMed ID: 35948762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is selective attention the basis for selective imitation in infants? An eye-tracking study of deferred imitation with 12-month-olds.
    Kolling T; Oturai G; Knopf M
    J Exp Child Psychol; 2014 Aug; 124():18-35. PubMed ID: 24727296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation Evaluation of Pilots' Situation Awareness in Bridge Simulations via Eye-Tracking Technology.
    Jiang S; Chen W; Kang Y
    Comput Intell Neurosci; 2021; 2021():7122437. PubMed ID: 34899896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enumeration strategy differences revealed by saccade-terminated eye tracking.
    Paul JM; Reeve RA; Forte JD
    Cognition; 2020 May; 198():104204. PubMed ID: 32014714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of fixation disengagement and oculomotor preparation in gap saccade task is gap-duration dependent.
    Li B; Guang J; Zhang M
    J Neurophysiol; 2021 Dec; 126(6):2053-2064. PubMed ID: 34758281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond screen time: Using head-mounted eye tracking to study natural behavior.
    Franchak JM; Yu C
    Adv Child Dev Behav; 2022; 62():61-91. PubMed ID: 35249686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infant embodied attention in context: Feasibility of home-based head-mounted eye tracking in early infancy.
    Bradshaw J; Fu X; Yurkovic-Harding J; Abney D
    Dev Cogn Neurosci; 2023 Dec; 64():101299. PubMed ID: 37748360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the collinear masking effect in visual search through eye tracking.
    Hsiao JH; Chan AB; An J; Yeh SL; Jingling L
    Psychon Bull Rev; 2021 Dec; 28(6):1933-1943. PubMed ID: 34109536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximizing valid eye-tracking data in human and macaque infants by optimizing calibration and adjusting areas of interest.
    Zeng G; Simpson EA; Paukner A
    Behav Res Methods; 2024 Feb; 56(2):881-907. PubMed ID: 36890330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OWLET: An automated, open-source method for infant gaze tracking using smartphone and webcam recordings.
    Werchan DM; Thomason ME; Brito NH
    Behav Res Methods; 2023 Sep; 55(6):3149-3163. PubMed ID: 36070130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.