BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36490276)

  • 1. Direct in situ protein tagging in Chlamydomonas reinhardtii utilizing TIM, a method for CRISPR/Cas9-based targeted insertional mutagenesis.
    Hou Y; Cheng X; Witman GB
    PLoS One; 2022; 17(12):e0278972. PubMed ID: 36490276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TIM, a targeted insertional mutagenesis method utilizing CRISPR/Cas9 in Chlamydomonas reinhardtii.
    Picariello T; Hou Y; Kubo T; McNeill NA; Yanagisawa HA; Oda T; Witman GB
    PLoS One; 2020; 15(5):e0232594. PubMed ID: 32401787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient precision editing of endogenous
    Nievergelt AP; Diener DR; Bogdanova A; Brown T; Pigino G
    Cell Rep Methods; 2023 Aug; 3(8):100562. PubMed ID: 37671018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HA-tagging of putative flagellar proteins in Chlamydomonas reinhardtii identifies a novel protein of intraflagellar transport complex B.
    Lechtreck KF; Luro S; Awata J; Witman GB
    Cell Motil Cytoskeleton; 2009 Aug; 66(8):469-82. PubMed ID: 19382199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoautotrophic production of macular pigment in a Chlamydomonas reinhardtii strain generated by using DNA-free CRISPR-Cas9 RNP-mediated mutagenesis.
    Baek K; Yu J; Jeong J; Sim SJ; Bae S; Jin E
    Biotechnol Bioeng; 2018 Mar; 115(3):719-728. PubMed ID: 29150930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR based targeted genome editing of Chlamydomonas reinhardtii using programmed Cas9-gRNA ribonucleoprotein.
    Dhokane D; Bhadra B; Dasgupta S
    Mol Biol Rep; 2020 Nov; 47(11):8747-8755. PubMed ID: 33074412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered
    Xu N; Oltmanns A; Zhao L; Girot A; Karimi M; Hoepfner L; Kelterborn S; Scholz M; Beißel J; Hegemann P; Bäumchen O; Liu LN; Huang K; Hippler M
    Elife; 2020 Dec; 9():. PubMed ID: 33300874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii.
    Dent RM; Haglund CM; Chin BL; Kobayashi MC; Niyogi KK
    Plant Physiol; 2005 Feb; 137(2):545-56. PubMed ID: 15653810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting of Photoreceptor Genes in
    Greiner A; Kelterborn S; Evers H; Kreimer G; Sizova I; Hegemann P
    Plant Cell; 2017 Oct; 29(10):2498-2518. PubMed ID: 28978758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An insertional mutant of Chlamydomonas reinhardtii with defective microtubule positioning.
    Horst CJ; Fishkind DJ; Pazour GJ; Witman GB
    Cell Motil Cytoskeleton; 1999 Oct; 44(2):143-54. PubMed ID: 10506749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic and genomic approaches to identify genes involved in flagellar assembly in Chlamydomonas reinhardtii.
    Lin H; Dutcher SK
    Methods Cell Biol; 2015; 127():349-86. PubMed ID: 25837400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic analysis of flagellar length control in Chlamydomonas reinhardtii: a new long-flagella locus and extragenic suppressor mutations.
    Asleson CM; Lefebvre PA
    Genetics; 1998 Feb; 148(2):693-702. PubMed ID: 9504917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole genome sequencing identifies a deletion in protein phosphatase 2A that affects its stability and localization in Chlamydomonas reinhardtii.
    Lin H; Miller ML; Granas DM; Dutcher SK
    PLoS Genet; 2013; 9(9):e1003841. PubMed ID: 24086163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insertional mutagenesis as a tool to study genes/functions in Chlamydomonas.
    Galván A; González-Ballester D; Fernández E
    Adv Exp Med Biol; 2007; 616():77-89. PubMed ID: 18161492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel MAP kinase regulates flagellar length in Chlamydomonas.
    Berman SA; Wilson NF; Haas NA; Lefebvre PA
    Curr Biol; 2003 Jul; 13(13):1145-9. PubMed ID: 12842015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Knockout of
    Asadian M; Saadati M; Bajestani FB; Beardall J; Abdolahadi F; Mahdinezhad N
    J Genet; 2022; 101():. PubMed ID: 35129125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalies in the motion dynamics of long-flagella mutants of Chlamydomonas reinhardtii.
    Khona DK; Rao VG; Motiwalla MJ; Varma PC; Kashyap AR; Das K; Shirolikar SM; Borde L; Dharmadhikari JA; Dharmadhikari AK; Mukhopadhyay S; Mathur D; D'Souza JS
    J Biol Phys; 2013 Jan; 39(1):1-14. PubMed ID: 23860831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterisation of chemotactic mutants of Chlamydomonas reinhardtii obtained by insertional mutagenesis.
    Ermilova EV; Zalutskaya ZM; Gromov BV; Häder DP; Purton S
    Protist; 2000 Aug; 151(2):127-37. PubMed ID: 10965952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MAPINS, a Highly Efficient Detection Method That Identifies Insertional Mutations and Complex DNA Rearrangements.
    Lin H; Cliften PF; Dutcher SK
    Plant Physiol; 2018 Dec; 178(4):1436-1447. PubMed ID: 30206105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and high efficiency transformation of
    Wang L; Yang L; Wen X; Chen Z; Liang Q; Li J; Wang W
    Biosci Rep; 2019 Jan; 39(1):. PubMed ID: 30530569
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.