BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36493464)

  • 1. Co(II) Complex with a Covalently Attached Pendent Quinol Selectively Reduces O
    Obisesan SV; Rose C; Farnum BH; Goldsmith CR
    J Am Chem Soc; 2022 Dec; 144(50):22826-22830. PubMed ID: 36493464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Analysis of the Superoxide Dismutase Mimicry Exhibited by a Zinc(II) Complex with a Redox-Active Organic Ligand.
    Miliordos E; Moore JL; Obisesan SV; Oppelt J; Ivanović-Burmazović I; Goldsmith CR
    J Phys Chem A; 2024 Feb; 128(8):1491-1500. PubMed ID: 38354404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen Reduction by Iron Porphyrins with Covalently Attached Pendent Phenol and Quinol.
    Singha A; Mondal A; Nayek A; Dey SG; Dey A
    J Am Chem Soc; 2020 Dec; 142(52):21810-21828. PubMed ID: 33320658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adding a Second Quinol to a Redox-Responsive MRI Contrast Agent Improves Its Relaxivity Response to H
    Yu M; Ward MB; Franke A; Ambrose SL; Whaley ZL; Bradford TM; Gorden JD; Beyers RJ; Cattley RC; Ivanović-Burmazović I; Schwartz DD; Goldsmith CR
    Inorg Chem; 2017 Mar; 56(5):2812-2826. PubMed ID: 28191846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quinol-containing ligands enable high superoxide dismutase activity by modulating coordination number, charge, oxidation states and stability of manganese complexes throughout redox cycling.
    Senft L; Moore JL; Franke A; Fisher KR; Scheitler A; Zahl A; Puchta R; Fehn D; Ison S; Sader S; Ivanović-Burmazović I; Goldsmith CR
    Chem Sci; 2021 Aug; 12(31):10483-10500. PubMed ID: 34447541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparations of Terminal Oxidase Cytochrome bd-II Isolated from Escherichia coli Reveal Significant Hydrogen Peroxide Scavenging Activity.
    Forte E; Nastasi MR; Borisov VB
    Biochemistry (Mosc); 2022 Aug; 87(8):720-730. PubMed ID: 36171653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for Quinol Oxidation Activity of ImoA, a Novel NapC/NirT Family Protein from the Neutrophilic Fe(II)-Oxidizing Bacterium Sideroxydans lithotrophicus ES-1.
    Jain A; Coelho A; Madjarov J; Paquete CM; Gralnick JA
    mBio; 2022 Oct; 13(5):e0215022. PubMed ID: 36106730
    [No Abstract]   [Full Text] [Related]  

  • 8. Pendent Relay Enhances H
    Nichols AW; Cook EN; Gan YJ; Miedaner PR; Dressel JM; Dickie DA; Shafaat HS; Machan CW
    J Am Chem Soc; 2021 Aug; 143(33):13065-13073. PubMed ID: 34380313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional flexibility of electron flow between quinol oxidation Q
    Borek A; Ekiert R; Osyczka A
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):754-761. PubMed ID: 29705394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two pathways of electron transfer in quinol-mediated cyclic phosphorylation in spinach chloroplasts.
    Binder RG; Selman BR
    Biochim Biophys Acta; 1980 Sep; 592(2):314-22. PubMed ID: 7407095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic level insight into the oxidative half-reaction of aromatic amine dehydrogenase.
    Roujeinikova A; Scrutton NS; Leys D
    J Biol Chem; 2006 Dec; 281(52):40264-72. PubMed ID: 17005560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. YhjA - An Escherichia coli trihemic enzyme with quinol peroxidase activity.
    Nóbrega CS; Devreese B; Pauleta SR
    Biochim Biophys Acta Bioenerg; 2018 Jun; 1859(6):411-422. PubMed ID: 29550214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peroxy and ferryl intermediates of the quinol-oxidizing cytochrome aa3 from Bacillus subtilis.
    Lauraeus M; Morgan JE; Wikström M
    Biochemistry; 1993 Mar; 32(10):2664-70. PubMed ID: 8383522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of hydroquinones by the versatile ligninolytic peroxidase from Pleurotus eryngii. H2O2 generation and the influence of Mn2+.
    Gómez-Toribio V; Martínez AT; Martínez MJ; Guillén F
    Eur J Biochem; 2001 Sep; 268(17):4787-93. PubMed ID: 11532015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton-coupled electron-transfer reduction of dioxygen catalyzed by a saddle-distorted cobalt phthalocyanine.
    Honda T; Kojima T; Fukuzumi S
    J Am Chem Soc; 2012 Mar; 134(9):4196-206. PubMed ID: 22299646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observations concerning the quinol oxidation site of the cytochrome bc1 complex.
    Berry EA; Huang LS
    FEBS Lett; 2003 Nov; 555(1):13-20. PubMed ID: 14630312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bromide-assisted oxidation of substituted phenols with hydrogen peroxide to the corresponding p-quinol and p-quinol ethers over WO4(2-)-exchanged layered double hydroxides.
    Sels BF; De Vos DE; Jacobs PA
    Angew Chem Int Ed Engl; 2004 Dec; 44(2):310-3. PubMed ID: 15614885
    [No Abstract]   [Full Text] [Related]  

  • 18. Kinetics of electron and proton transfer during O(2) reduction in cytochrome aa(3) from A. ambivalens: an enzyme lacking Glu(I-286).
    Gilderson G; Aagaard A; Gomes CM; Adelroth P; Teixeira M; Brzezinski P
    Biochim Biophys Acta; 2001 Jan; 1503(3):261-70. PubMed ID: 11115638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic two-electron reduction of dioxygen by ferrocene derivatives with manganese(V) corroles.
    Jung J; Liu S; Ohkubo K; Abu-Omar MM; Fukuzumi S
    Inorg Chem; 2015 May; 54(9):4285-91. PubMed ID: 25867007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical analysis of the unusual temperature dependence of the kinetic isotope effect in quinol oxidation.
    Ludlow MK; Soudackov AV; Hammes-Schiffer S
    J Am Chem Soc; 2009 May; 131(20):7094-102. PubMed ID: 19351186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.