BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36493569)

  • 1. Perspective on "in the wild" movement analysis using machine learning.
    Dorschky E; Camomilla V; Davis J; Federolf P; Reenalda J; Koelewijn AD
    Hum Mov Sci; 2023 Feb; 87():103042. PubMed ID: 36493569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearable Performance Devices in Sports Medicine.
    Li RT; Kling SR; Salata MJ; Cupp SA; Sheehan J; Voos JE
    Sports Health; 2016; 8(1):74-8. PubMed ID: 26733594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Wearable-Sensor System with AI Technology for Real-Time Biomechanical Feedback Training in Hammer Throw.
    Wang Y; Shan G; Li H; Wang L
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36617025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AI-Assisted Fatigue and Stamina Control for Performance Sports on IMU-Generated Multivariate Times Series Datasets.
    Biró A; Cuesta-Vargas AI; Szilágyi L
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wearable Sensors and Smart Devices to Monitor Rehabilitation Parameters and Sports Performance: An Overview.
    De Fazio R; Mastronardi VM; De Vittorio M; Visconti P
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wearable Sensors in Sports for Persons with Disability: A Systematic Review.
    Rum L; Sten O; Vendrame E; Belluscio V; Camomilla V; Vannozzi G; Truppa L; Notarantonio M; Sciarra T; Lazich A; Mannini A; Bergamini E
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33799941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine and deep learning for sport-specific movement recognition: a systematic review of model development and performance.
    Cust EE; Sweeting AJ; Ball K; Robertson S
    J Sports Sci; 2019 Mar; 37(5):568-600. PubMed ID: 30307362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of machine learning classifiers for differentiating level and sport using movement data.
    Ross GB; Clouthier AL; Boyle A; Fischer SL; Graham RB
    J Sports Sci; 2022 Oct; 40(19):2166-2172. PubMed ID: 36415053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced biomechanical analytics: Wearable technologies for precision health monitoring in sports performance.
    Alzahrani A; Ullah A
    Digit Health; 2024; 10():20552076241256745. PubMed ID: 38840658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable Technology and Analytics as a Complementary Toolkit to Optimize Workload and to Reduce Injury Burden.
    Seshadri DR; Thom ML; Harlow ER; Gabbett TJ; Geletka BJ; Hsu JJ; Drummond CK; Phelan DM; Voos JE
    Front Sports Act Living; 2020; 2():630576. PubMed ID: 33554111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing volleyball training: empowering athletes and coaches through advanced sensing and analysis.
    Salim FA; Postma DBW; Haider F; Luz S; van Beijnum BF; Reidsma D
    Front Sports Act Living; 2024; 6():1326807. PubMed ID: 38689871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities.
    Halilaj E; Rajagopal A; Fiterau M; Hicks JL; Hastie TJ; Delp SL
    J Biomech; 2018 Nov; 81():1-11. PubMed ID: 30279002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Use of Wearable Microsensors to Quantify Sport-Specific Movements.
    Chambers R; Gabbett TJ; Cole MH; Beard A
    Sports Med; 2015 Jul; 45(7):1065-81. PubMed ID: 25834998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning Algorithms Predict Functional Improvement After Hip Arthroscopy for Femoroacetabular Impingement Syndrome in Athletes.
    Kunze KN; Polce EM; Clapp I; Nwachukwu BU; Chahla J; Nho SJ
    J Bone Joint Surg Am; 2021 Jun; 103(12):1055-1062. PubMed ID: 33877058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wearables and Machine Learning for Improving Runners' Motivation from an Affective Perspective.
    Baldassarri S; García de Quirós J; Beltrán JR; Álvarez P
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the Role of Wearable Technology in Sport Kinematics and Kinetics: A Systematic Review.
    Adesida Y; Papi E; McGregor AH
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30987014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Safeguarding Athletes Against Head Injuries Through Advances in Technology: A Scoping Review of the Uses of Machine Learning in the Management of Sports-Related Concussion.
    Tjønndal A; Røsten S
    Front Sports Act Living; 2022; 4():837643. PubMed ID: 35520095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Framework for Intelligent Swimming Analytics with Wearable Sensors for Stroke Classification.
    Costa J; Silva C; Santos M; Fernandes T; Faria S
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Review of Recent Advances in Vital Signals Monitoring of Sports and Health via Flexible Wearable Sensors.
    Sun W; Guo Z; Yang Z; Wu Y; Lan W; Liao Y; Wu X; Liu Y
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Action recognition for sports combined training based on wearable sensor technology and SVM prediction.
    Liu Z; Wang X
    Prev Med; 2023 Aug; 173():107582. PubMed ID: 37348768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.