These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36493678)

  • 1. Coincidence summing corrections using PENELOPE/PENNUC Monte Carlo code for volume sources of different densities.
    Salpadimos N; Karfopoulos K; Seimenis I; Potiriadis C
    Appl Radiat Isot; 2023 Feb; 192():110589. PubMed ID: 36493678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coincidence summing corrections for volume samples using the PENELOPE/penEasy Monte Carlo code.
    Vargas A; Camp A; Serrano I; Duch MA
    Appl Radiat Isot; 2014 May; 87():376-9. PubMed ID: 24326316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculation of Coincidence Summing Correction Factors for an HPGe detector using GEANT4.
    Giubrone G; Ortiz J; Gallardo S; Martorell S; Bas MC
    J Environ Radioact; 2016 Jul; 158-159():114-8. PubMed ID: 27085040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microdosimetric properties of ionizing electrons in water: a test of the PENELOPE code system.
    Stewart RD; Wilson WE; McDonald JC; Strom DJ
    Phys Med Biol; 2002 Jan; 47(1):79-88. PubMed ID: 11814229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental validation of coincidence summing corrections computed by the ETNA software.
    Lépy MC; Brun P; Collin C; Plagnard J
    Appl Radiat Isot; 2006; 64(10-11):1340-5. PubMed ID: 16600602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular dosimetry calculations for Strontium-90 using Monte Carlo code PENELOPE.
    Hocine N; Farlay D; Boivin G; Franck D; Agarande M
    Int J Radiat Biol; 2014 Nov; 90(11):953-8. PubMed ID: 25134542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy.
    Botta F; Mairani A; Battistoni G; Cremonesi M; Di Dia A; Fassò A; Ferrari A; Ferrari M; Paganelli G; Pedroli G; Valente M
    Med Phys; 2011 Jul; 38(7):3944-54. PubMed ID: 21858991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coincidence summing corrections applied to volume sources.
    Lépy MC; Ferreux L; Pierre S
    Appl Radiat Isot; 2012 Sep; 70(9):2137-40. PubMed ID: 22410298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of kQmsr,Q0fmsr,fref factors for ion chambers used in the calibration of Leksell Gamma Knife Perfexion model using EGSnrc and PENELOPE Monte Carlo codes.
    Mirzakhanian L; Benmakhlouf H; Tessier F; Seuntjens J
    Med Phys; 2018 Apr; 45(4):1748-1757. PubMed ID: 29468677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculation of true coincidence summing corrections for extended sources with EFFTRAN.
    Vidmar T; Kanisch G; Vidmar G
    Appl Radiat Isot; 2011 Jun; 69(6):908-11. PubMed ID: 21397512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN.
    Uusijärvi H; Chouin N; Bernhardt P; Ferrer L; Bardiès M; Forssell-Aronsson E
    Cancer Biother Radiopharm; 2009 Aug; 24(4):461-7. PubMed ID: 19694581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Approaches on Photon-Attenuation and Coincidence-summing Corrections for the detection of gamma-emitting radionuclides IN foods.
    Rolle C; Lin Z; Healey S
    Appl Radiat Isot; 2017 Aug; 126():134-137. PubMed ID: 28262424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the iteration of coincidence summing correction for determination of gamma-ray intensities.
    Shima Y; Hayashi H; Kojima Y; Jyousyou R; Shibata M
    Appl Radiat Isot; 2016 Mar; 109():535-538. PubMed ID: 26620847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correction of coincidence summing effects for add-back mode measurements with a 4π clover detector using experimental total efficiency.
    Yamashita T; Kamada H; Kojima Y; Shibata M
    Appl Radiat Isot; 2018 May; 135():131-134. PubMed ID: 29413827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of perturbation correction factors for some reference dosimeters in high-energy photon beams with the Monte Carlo code PENELOPE.
    Mazurier J; Gouriou J; Chauvenet B; Barthe J
    Phys Med Biol; 2001 Jun; 46(6):1707-17. PubMed ID: 11419629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmark of PENELOPE code for low-energy photon transport: dose comparisons with MCNP4 and EGS4.
    Ye SJ; Brezovich IA; Pareek P; Naqvi SA
    Phys Med Biol; 2004 Feb; 49(3):387-97. PubMed ID: 15012008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo dosimetric characterization of the Cs-137 selectron/LDR source: evaluation of applicator attenuation and superposition approximation effects.
    Pérez-Calatayud J; Granero D; Ballester F; Puchades V; Casal E
    Med Phys; 2004 Mar; 31(3):493-9. PubMed ID: 15070245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards absolute activity measurements by ionisation chambers using the PENELOPE Monte-Carlo code.
    de Vismes A; Amiot MN
    Appl Radiat Isot; 2003 Oct; 59(4):267-72. PubMed ID: 14522235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of deterministic and Monte Carlo methods in shielding design.
    Oliveira AD; Oliveira C
    Radiat Prot Dosimetry; 2005; 115(1-4):254-7. PubMed ID: 16381723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EGSnrc-based Monte Carlo dosimetry of CSA1 and CSA2 137Cs brachytherapy source models.
    Selvam TP; Sahoo S; Vishwakarma RS
    Med Phys; 2009 Sep; 36(9):3870-9. PubMed ID: 19810459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.