BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36493722)

  • 1. 3D printed neural tissues with in situ optical dopamine sensors.
    Li J; Reimers A; Dang KM; Brunk MGK; Drewes J; Hirsch UM; Willems C; Schmelzer CEH; Groth T; Nia AS; Feng X; Adelung R; Sacher WD; Schütt F; Poon JKS
    Biosens Bioelectron; 2023 Feb; 222():114942. PubMed ID: 36493722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.
    Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K
    Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocol for printing 3D neural tissues using the BIO X equipped with a pneumatic printhead.
    Chrenek J; Kirsch R; Scheck K; Willerth SM
    STAR Protoc; 2022 Jun; 3(2):101348. PubMed ID: 35509974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs.
    Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA
    Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Process- and bio-inspired hydrogels for 3D bioprinting of soft free-standing neural and glial tissues.
    Haring AP; Thompson EG; Tong Y; Laheri S; Cesewski E; Sontheimer H; Johnson BN
    Biofabrication; 2019 Feb; 11(2):025009. PubMed ID: 30695770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix.
    Shin YJ; Shafranek RT; Tsui JH; Walcott J; Nelson A; Kim DH
    Acta Biomater; 2021 Jan; 119():75-88. PubMed ID: 33166713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Bioprinting Mesenchymal Stem Cell-Derived Neural Tissues Using a Fibrin-Based Bioink.
    Restan Perez M; Sharma R; Masri NZ; Willerth SM
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional-Bioprinted Dopamine-Based Matrix for Promoting Neural Regeneration.
    Zhou X; Cui H; Nowicki M; Miao S; Lee SJ; Masood F; Harris BT; Zhang LG
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):8993-9001. PubMed ID: 29461046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.
    Sorkio A; Koch L; Koivusalo L; Deiwick A; Miettinen S; Chichkov B; Skottman H
    Biomaterials; 2018 Jul; 171():57-71. PubMed ID: 29684677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing vascular supportive albumen-rich composite bioink for organ 3D printing.
    Liu S; Zhang H; Hu Q; Shen Z; Rana D; Ramalingam M
    J Mech Behav Biomed Mater; 2020 Apr; 104():103642. PubMed ID: 32174400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications.
    Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential impact of polyethylenimine on biological behavior of 3D-printed alginate scaffolds.
    Khoshnood N; Zamanian A; Abbasi M
    Int J Biol Macromol; 2021 May; 178():19-28. PubMed ID: 33636258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alginate based hydrogel inks for 3D bioprinting of engineered orthopedic tissues.
    Murab S; Gupta A; Włodarczyk-Biegun MK; Kumar A; van Rijn P; Whitlock P; Han SS; Agrawal G
    Carbohydr Polym; 2022 Nov; 296():119964. PubMed ID: 36088004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ECM Based Bioink for Tissue Mimetic 3D Bioprinting.
    Nam SY; Park SH
    Adv Exp Med Biol; 2018; 1064():335-353. PubMed ID: 30471042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and evaluation of a multicomponent bioink consisting of alginate, gelatin, diethylaminoethyl cellulose and collagen peptide for 3D bioprinting of tissue construct for drug screening application.
    Geevarghese R; Somasekharan LT; Bhatt A; Kasoju N; Nair RP
    Int J Biol Macromol; 2022 May; 207():278-288. PubMed ID: 35257733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications.
    Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P
    Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts.
    Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK
    Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C
    J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D bioprinted human iPSC-derived somatosensory constructs with functional and highly purified sensory neuron networks.
    Hirano M; Huang Y; Vela Jarquin D; De la Garza Hernández RL; Jodat YA; Luna Cerón E; García-Rivera LE; Shin SR
    Biofabrication; 2021 Jun; 13(3):. PubMed ID: 33962404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Bioprinting Technologies for Tissue Engineering Applications.
    Gu BK; Choi DJ; Park SJ; Kim YJ; Kim CH
    Adv Exp Med Biol; 2018; 1078():15-28. PubMed ID: 30357616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.