BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36493748)

  • 1. Reindeer light the way to scarless wound healing.
    Caves E; Horsley V
    Cell; 2022 Dec; 185(25):4675-4677. PubMed ID: 36493748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibroblast inflammatory priming determines regenerative versus fibrotic skin repair in reindeer.
    Sinha S; Sparks HD; Labit E; Robbins HN; Gowing K; Jaffer A; Kutluberk E; Arora R; Raredon MSB; Cao L; Swanson S; Jiang P; Hee O; Pope H; Workentine M; Todkar K; Sharma N; Bharadia S; Chockalingam K; de Almeida LGN; Adam M; Niklason L; Potter SS; Seifert AW; Dufour A; Gabriel V; Rosin NL; Stewart R; Muench G; McCorkell R; Matyas J; Biernaskie J
    Cell; 2022 Dec; 185(25):4717-4736.e25. PubMed ID: 36493752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regenerative healing, scar-free healing and scar formation across the species: current concepts and future perspectives.
    Ud-Din S; Volk SW; Bayat A
    Exp Dermatol; 2014 Sep; 23(9):615-9. PubMed ID: 24863070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coacervate-mediated exogenous growth factor delivery for scarless skin regeneration.
    Park U; Lee MS; Jeon J; Lee S; Hwang MP; Wang Y; Yang HS; Kim K
    Acta Biomater; 2019 May; 90():179-191. PubMed ID: 30936036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in scarless foetal wound healing and prospects for scar reduction in adults.
    Yin JL; Wu Y; Yuan ZW; Gao XH; Chen HD
    Cell Prolif; 2020 Nov; 53(11):e12916. PubMed ID: 33058377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibroblasts in Scar Formation: Biology and Clinical Translation.
    Qian H; Shan Y; Gong R; Lin D; Zhang M; Wang C; Wang L
    Oxid Med Cell Longev; 2022; 2022():4586569. PubMed ID: 35602101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skin wound healing in different aged Xenopus laevis.
    Bertolotti E; Malagoli D; Franchini A
    J Morphol; 2013 Aug; 274(8):956-64. PubMed ID: 23640793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention.
    Ferguson MW; O'Kane S
    Philos Trans R Soc Lond B Biol Sci; 2004 May; 359(1445):839-50. PubMed ID: 15293811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cells, matrix, growth factors, and the surgeon. The biology of scarless fetal wound repair.
    Adzick NS; Lorenz HP
    Ann Surg; 1994 Jul; 220(1):10-8. PubMed ID: 8024353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scarless fetal wounds are associated with an increased matrix metalloproteinase-to-tissue-derived inhibitor of metalloproteinase ratio.
    Dang CM; Beanes SR; Lee H; Zhang X; Soo C; Ting K
    Plast Reconstr Surg; 2003 Jun; 111(7):2273-85. PubMed ID: 12794470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regenerative Scar-Free Skin Wound Healing.
    Monavarian M; Kader S; Moeinzadeh S; Jabbari E
    Tissue Eng Part B Rev; 2019 Aug; 25(4):294-311. PubMed ID: 30938269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scarless wound healing: finding the right cells and signals.
    Leavitt T; Hu MS; Marshall CD; Barnes LA; Lorenz HP; Longaker MT
    Cell Tissue Res; 2016 Sep; 365(3):483-93. PubMed ID: 27256396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Murine Incisional Fetal Wound-Healing Model to Study Scarless and Fibrotic Skin Repair.
    Wilgus TA
    Methods Mol Biol; 2021; 2193():13-21. PubMed ID: 32808254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of the inflammatory response by increasing fetal wound size or interleukin-10 overexpression determines wound phenotype and scar formation.
    Morris MW; Allukian M; Herdrich BJ; Caskey RC; Zgheib C; Xu J; Dorsett-Martin W; Mitchell ME; Liechty KW
    Wound Repair Regen; 2014; 22(3):406-14. PubMed ID: 24844340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interleukin-33 encourages scar formation in murine fetal skin wounds.
    Wulff BC; Pappa NK; Wilgus TA
    Wound Repair Regen; 2019 Jan; 27(1):19-28. PubMed ID: 30368969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-omic analysis reveals divergent molecular events in scarring and regenerative wound healing.
    Mascharak S; Talbott HE; Januszyk M; Griffin M; Chen K; Davitt MF; Demeter J; Henn D; Bonham CA; Foster DS; Mooney N; Cheng R; Jackson PK; Wan DC; Gurtner GC; Longaker MT
    Cell Stem Cell; 2022 Feb; 29(2):315-327.e6. PubMed ID: 35077667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ontogeny of scarless healing II: EGF and PDGF-B gene expression in fetal rat skin and fibroblasts as a function of gestational age.
    Peled ZM; Rhee SJ; Hsu M; Chang J; Krummel TM; Longaker MT
    Ann Plast Surg; 2001 Oct; 47(4):417-24. PubMed ID: 11601578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pulsatile release platform based on photo-induced imine-crosslinking hydrogel promotes scarless wound healing.
    Zhang J; Zheng Y; Lee J; Hua J; Li S; Panchamukhi A; Yue J; Gou X; Xia Z; Zhu L; Wu X
    Nat Commun; 2021 Mar; 12(1):1670. PubMed ID: 33723267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macrophages in Skin Wounds: Functions and Therapeutic Potential.
    Sim SL; Kumari S; Kaur S; Khosrotehrani K
    Biomolecules; 2022 Nov; 12(11):. PubMed ID: 36359009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical and practical aspects of using fetal fibroblasts for skin regeneration.
    Li M; Zhao Y; Hao H; Han W; Fu X
    Ageing Res Rev; 2017 Jul; 36():32-41. PubMed ID: 28238941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.