These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36493843)

  • 1. The modulation effect of the Steinernema carpocapsae - Xenorhabdus nematophila complex on immune-related genes in Drosophila suzukii larvae.
    Garriga A; Toubarro D; Simões N; Morton A; García-Del-Pino F
    J Invertebr Pathol; 2023 Feb; 196():107870. PubMed ID: 36493843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immune Response of
    Garriga A; Mastore M; Morton A; Pino FGD; Brivio MF
    Insects; 2020 Mar; 11(4):. PubMed ID: 32231138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential Regulation of Immune Signaling and Survival Response in Drosophila melanogaster Larvae upon Steinernema carpocapsae Nematode Infection.
    Yadav S; Gupta S; Eleftherianos I
    Insects; 2018 Feb; 9(1):. PubMed ID: 29419764
    [No Abstract]   [Full Text] [Related]  

  • 4. Analysis of the immune transcriptome of the invasive pest spotted wing drosophila infected by
    Garriga A; Toubarro D; Morton A; Simões N; García-Del-Pino F
    Bull Entomol Res; 2024 Oct; 114(5):622-630. PubMed ID: 39328175
    [No Abstract]   [Full Text] [Related]  

  • 5. OxyR is required for oxidative stress resistance of the entomopathogenic bacterium
    Bientz V; Lanois A; Ginibre N; Pagès S; Ogier JC; George S; Rialle S; Brillard J
    Microbiology (Reading); 2024 Jul; 170(7):. PubMed ID: 39058385
    [No Abstract]   [Full Text] [Related]  

  • 6. High Levels of the Xenorhabdus nematophila Transcription Factor Lrp Promote Mutualism with the Steinernema carpocapsae Nematode Host.
    Cao M; Patel T; Rickman T; Goodrich-Blair H; Hussa EA
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389546
    [No Abstract]   [Full Text] [Related]  

  • 7. Prolonged Storage Increases Virulence of Steinernema Entomopathogenic Nematodes Toward Drosophila Larvae.
    Yadav S; Eleftherianos I
    J Parasitol; 2018 Dec; 104(6):722-725. PubMed ID: 30088785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Imaginal Disc Growth Factors 2 and 3 participate in the Drosophila response to nematode infection.
    Yadav S; Eleftherianos I
    Parasite Immunol; 2018 Oct; 40(10):e12581. PubMed ID: 30107045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The prophenoloxidase system in Drosophila participates in the anti-nematode immune response.
    Cooper D; Wuebbolt C; Heryanto C; Eleftherianos I
    Mol Immunol; 2019 May; 109():88-98. PubMed ID: 30909122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. They've got a ticket to ride: Xenorhabdus nematophila-Steinernema carpocapsae symbiosis.
    Goodrich-Blair H
    Curr Opin Microbiol; 2007 Jun; 10(3):225-30. PubMed ID: 17553732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of an entomopathogen nematode on the immune response of the insect pest red palm weevil: Focus on the host antimicrobial response.
    Binda-Rossetti S; Mastore M; Protasoni M; Brivio MF
    J Invertebr Pathol; 2016 Jan; 133():110-9. PubMed ID: 26549224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial population dynamics in the hemolymph of Manduca sexta infected with Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae.
    Singh S; Reese JM; Casanova-Torres AM; Goodrich-Blair H; Forst S
    Appl Environ Microbiol; 2014 Jul; 80(14):4277-85. PubMed ID: 24814780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Xenorhabdus nematophila nilABC genes confer the ability of Xenorhabdus spp. to colonize Steinernema carpocapsae nematodes.
    Cowles CE; Goodrich-Blair H
    J Bacteriol; 2008 Jun; 190(12):4121-8. PubMed ID: 18390667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partner-specific induction of Spodoptera frugiperda immune genes in response to the entomopathogenic nematobacterial complex Steinernema carpocapsae-Xenorhabdus nematophila.
    Huot L; Bigourdan A; Pagès S; Ogier JC; Girard PA; Nègre N; Duvic B
    Dev Comp Immunol; 2020 Jul; 108():103676. PubMed ID: 32184079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved method for generating axenic entomopathogenic nematodes.
    Yadav S; Shokal U; Forst S; Eleftherianos I
    BMC Res Notes; 2015 Sep; 8():461. PubMed ID: 26386557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation in the susceptibility of Drosophila to different entomopathogenic nematodes.
    Peña JM; Carrillo MA; Hallem EA
    Infect Immun; 2015 Mar; 83(3):1130-8. PubMed ID: 25561714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of cell density and phase variants of bacterial symbionts (Xenorhabdus spp.) on dauer juvenile recovery and development of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida).
    Hirao A; Ehlers RU
    Appl Microbiol Biotechnol; 2009 Aug; 84(1):77-85. PubMed ID: 19319521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Analysis of Xenorhabdus koppenhoeferi Gene Expression during Symbiotic Persistence in the Host Nematode.
    An R; Grewal PS
    PLoS One; 2016; 11(1):e0145739. PubMed ID: 26745883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of phenotypic variation in Xenorhabdus nematophila on its mutualistic relationship with the entomopathogenic nematode Steinernema carpocapsae.
    Sicard M; Tabart J; Boemare NE; Thaler O; Moulia C
    Parasitology; 2005 Nov; 131(Pt 5):687-94. PubMed ID: 16255827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endosymbiont-based immunity in Drosophila melanogaster against parasitic nematode infection.
    Yadav S; Frazer J; Banga A; Pruitt K; Harsh S; Jaenike J; Eleftherianos I
    PLoS One; 2018; 13(2):e0192183. PubMed ID: 29466376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.