BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

560 related articles for article (PubMed ID: 36493922)

  • 1. Structure and properties of Pickering emulsions stabilized solely with novel buckwheat protein colloidal particles.
    Song S; Li Y; Zhu Q; Zhang X; Wang Y; Tao L; Yu L
    Int J Biol Macromol; 2023 Jan; 226():61-71. PubMed ID: 36493922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agar-gelatin Maillard conjugates used for Pickering emulsion stabilization.
    Du L; Ru Y; Weng H; Zhang Y; Chen J; Xiao A; Xiao Q
    Carbohydr Polym; 2024 Sep; 340():122293. PubMed ID: 38858005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characterization of Pickering emulsion gels stabilized by zein/pullulan complex colloidal particles.
    Liu Q; Chang X; Shan Y; Fu F; Ding S
    J Sci Food Agric; 2021 Jul; 101(9):3630-3643. PubMed ID: 33275778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Media-milled agar particles as a novel emulsifier for food Pickering emulsion.
    Chen Z; Liang G; Ru Y; Weng H; Zhang Y; Chen J; Xiao Q; Xiao A
    Int J Biol Macromol; 2023 Dec; 253(Pt 5):127185. PubMed ID: 37797859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Encapsulation of Vitamin D
    Mitbumrung W; Suphantharika M; McClements DJ; Winuprasith T
    J Food Sci; 2019 Nov; 84(11):3213-3221. PubMed ID: 31589344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water-in-oil Pickering emulsion polymerization of N-isopropyl acrylamide using starch-based nanoparticles as emulsifier.
    Zhai K; Pei X; Wang C; Deng Y; Tan Y; Bai Y; Zhang B; Xu K; Wang P
    Int J Biol Macromol; 2019 Jun; 131():1032-1037. PubMed ID: 30898598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oil-in-water Pickering emulsions using a protein nano-ring as high-grade emulsifiers.
    Xu B; Liu C; Sun H; Wang X; Huang F
    Colloids Surf B Biointerfaces; 2020 Mar; 187():110646. PubMed ID: 31785851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oil-in-water Pickering emulsion stabilization with oppositely charged polysaccharide particles: chitin nanocrystals/fucoidan complexes.
    Liu Z; Hu M; Zhang S; Jiang L; Xie F; Li Y
    J Sci Food Agric; 2021 May; 101(7):3003-3012. PubMed ID: 33205457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micronized apple pomace as a novel emulsifier for food O/W Pickering emulsion.
    Lu Z; Ye F; Zhou G; Gao R; Qin D; Zhao G
    Food Chem; 2020 Nov; 330():127325. PubMed ID: 32569939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Panax Notoginseng polysaccharide stabilized gel-like Pickering emulsions: Stability and mechanism.
    Li D; Wu Y; Yin H; Feng W; Ma X; Xiao H; Xin W; Li C
    Int J Biol Macromol; 2023 Sep; 249():125893. PubMed ID: 37473886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors that affect Pickering emulsions stabilized by mesoporous hollow silica microspheres.
    Zhang Y; Bao Y; Zhang W; Xiang R
    J Colloid Interface Sci; 2023 Mar; 633():1012-1021. PubMed ID: 36516677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pickering Emulsions Stabilized by Tea Water-Insoluble Protein Nanoparticles From Tea Residues: Responsiveness to Ionic Strength.
    Ren Z; Chen Z; Zhang Y; Lin X; Weng W; Li B
    Front Nutr; 2022; 9():892845. PubMed ID: 35558751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Surface-Active Chaperonin Nanobarrels for Oil-in-Water Pickering Emulsions and Delivery of Lipophilic Compounds.
    Xu B; Liu C; Sun H; Wang X; Huang F
    J Agric Food Chem; 2019 Sep; 67(36):10155-10164. PubMed ID: 31433944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pickering emulsion gels stabilized by high hydrostatic pressure-induced whey protein isolate gel particles: Characterization and encapsulation of curcumin.
    Lv P; Wang D; Dai L; Wu X; Gao Y; Yuan F
    Food Res Int; 2020 Jun; 132():109032. PubMed ID: 32331631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizations of Pickering emulsions stabilized by starch nanoparticles: Influence of starch variety and particle size.
    Ge S; Xiong L; Li M; Liu J; Yang J; Chang R; Liang C; Sun Q
    Food Chem; 2017 Nov; 234():339-347. PubMed ID: 28551245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study on the capacity of a range of food-grade particles to form stable O/W and W/O Pickering emulsions.
    Duffus LJ; Norton JE; Smith P; Norton IT; Spyropoulos F
    J Colloid Interface Sci; 2016 Jul; 473():9-21. PubMed ID: 27042820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of alginate in starch nanocrystals-stabilized Pickering emulsions: From physical stability and microstructure to rheology behavior.
    Cai J; Zhang D; Xie F
    Food Chem; 2024 Jan; 431():137017. PubMed ID: 37562336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multistimuli-Responsive Pickering Emulsion Stabilized by Se-Containing Surfactant-Modified Chitosan.
    Ren X; He S; Liu D; Zhang Y
    J Agric Food Chem; 2020 Apr; 68(13):3986-3994. PubMed ID: 32186870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple method for fabrication of high internal phase emulsions solely using novel pea protein isolate nanoparticles: Stability of ionic strength and temperature.
    Li XL; Liu WJ; Xu BC; Zhang B
    Food Chem; 2022 Feb; 370():130899. PubMed ID: 34509149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rice bran-modified wheat gluten nanoparticles effectively stabilized pickering emulsion: An interfacial antioxidant inhibiting lipid oxidation.
    Wang Z; Ma Y; Chen H; Deng Y; Wei Z; Zhang Y; Tang X; Li P; Zhao Z; Zhou P; Liu G; Zhang M
    Food Chem; 2022 Sep; 387():132874. PubMed ID: 35427865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.