These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Protein Kinase D and Gβγ Subunits Mediate Agonist-evoked Translocation of Protease-activated Receptor-2 from the Golgi Apparatus to the Plasma Membrane. Jensen DD; Zhao P; Jimenez-Vargas NN; Lieu T; Gerges M; Yeatman HR; Canals M; Vanner SJ; Poole DP; Bunnett NW J Biol Chem; 2016 May; 291(21):11285-99. PubMed ID: 27030010 [TBL] [Abstract][Full Text] [Related]
3. Protein kinase D and Gβγ mediate sustained nociceptive signaling by biased agonists of protease-activated receptor-2. Zhao P; Pattison LA; Jensen DD; Jimenez-Vargas NN; Latorre R; Lieu T; Jaramillo JO; Lopez-Lopez C; Poole DP; Vanner SJ; Schmidt BL; Bunnett NW J Biol Chem; 2019 Jul; 294(27):10649-10662. PubMed ID: 31142616 [TBL] [Abstract][Full Text] [Related]
4. PAQR3 regulates Golgi vesicle fission and transport via the Gβγ-PKD signaling pathway. Hewavitharana T; Wedegaertner PB Cell Signal; 2015 Dec; 27(12):2444-51. PubMed ID: 26327583 [TBL] [Abstract][Full Text] [Related]
5. Regulation of constitutive cargo transport from the trans-Golgi network to plasma membrane by Golgi-localized G protein betagamma subunits. Irannejad R; Wedegaertner PB J Biol Chem; 2010 Oct; 285(42):32393-404. PubMed ID: 20720014 [TBL] [Abstract][Full Text] [Related]
6. Gβγ translocation to the Golgi apparatus activates ARF1 to spatiotemporally regulate G protein-coupled receptor signaling to MAPK. Khater M; Bryant CN; Wu G J Biol Chem; 2021; 296():100805. PubMed ID: 34022220 [TBL] [Abstract][Full Text] [Related]
13. G protein betagamma subunits as targets for small molecule therapeutic development. Smrcka AV; Lehmann DM; Dessal AL Comb Chem High Throughput Screen; 2008 Jun; 11(5):382-95. PubMed ID: 18537559 [TBL] [Abstract][Full Text] [Related]
14. G protein betagamma complex translocation from plasma membrane to Golgi complex is influenced by receptor gamma subunit interaction. Akgoz M; Kalyanaraman V; Gautam N Cell Signal; 2006 Oct; 18(10):1758-68. PubMed ID: 16517125 [TBL] [Abstract][Full Text] [Related]
15. G-protein βγ subunits as multi-functional scaffolds and transducers in G-protein-coupled receptor signaling. Smrcka AV; Fisher I Cell Mol Life Sci; 2019 Nov; 76(22):4447-4459. PubMed ID: 31435698 [TBL] [Abstract][Full Text] [Related]
16. Receptor-mediated reversible translocation of the G protein betagamma complex from the plasma membrane to the Golgi complex. Akgoz M; Kalyanaraman V; Gautam N J Biol Chem; 2004 Dec; 279(49):51541-4. PubMed ID: 15448129 [TBL] [Abstract][Full Text] [Related]
17. Gγ identity dictates efficacy of Gβγ signaling and macrophage migration. Senarath K; Payton JL; Kankanamge D; Siripurapu P; Tennakoon M; Karunarathne A J Biol Chem; 2018 Feb; 293(8):2974-2989. PubMed ID: 29317505 [TBL] [Abstract][Full Text] [Related]
18. G protein βγ subunits directly interact with and activate phospholipase Cϵ. Madukwe JC; Garland-Kuntz EE; Lyon AM; Smrcka AV J Biol Chem; 2018 Apr; 293(17):6387-6397. PubMed ID: 29535186 [TBL] [Abstract][Full Text] [Related]
19. Regulation of G Protein βγ Signaling. Senarath K; Kankanamge D; Samaradivakara S; Ratnayake K; Tennakoon M; Karunarathne A Int Rev Cell Mol Biol; 2018; 339():133-191. PubMed ID: 29776603 [TBL] [Abstract][Full Text] [Related]
20. Regulation of G-protein signaling by RKTG via sequestration of the G betagamma subunit to the Golgi apparatus. Jiang Y; Xie X; Zhang Y; Luo X; Wang X; Fan F; Zheng D; Wang Z; Chen Y Mol Cell Biol; 2010 Jan; 30(1):78-90. PubMed ID: 19884349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]