These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 36494337)
1. Interpretable and tractable models of transcriptional noise for the rational design of single-molecule quantification experiments. Gorin G; Vastola JJ; Fang M; Pachter L Nat Commun; 2022 Dec; 13(1):7620. PubMed ID: 36494337 [TBL] [Abstract][Full Text] [Related]
2. Statistics of Nascent and Mature RNA Fluctuations in a Stochastic Model of Transcriptional Initiation, Elongation, Pausing, and Termination. Filatova T; Popovic N; Grima R Bull Math Biol; 2020 Dec; 83(1):3. PubMed ID: 33351158 [TBL] [Abstract][Full Text] [Related]
3. Inferring extrinsic noise from single-cell gene expression data using approximate Bayesian computation. Lenive O; W Kirk PD; H Stumpf MP BMC Syst Biol; 2016 Aug; 10(1):81. PubMed ID: 27549182 [TBL] [Abstract][Full Text] [Related]
4. Fast Bayesian parameter estimation for stochastic logistic growth models. Heydari J; Lawless C; Lydall DA; Wilkinson DJ Biosystems; 2014 Aug; 122():55-72. PubMed ID: 24906175 [TBL] [Abstract][Full Text] [Related]
5. MaxCal can infer models from coupled stochastic trajectories of gene expression and cell division. Torres A; Cockerell S; Phillips M; Balázsi G; Ghosh K Biophys J; 2023 Jul; 122(13):2623-2635. PubMed ID: 37218129 [TBL] [Abstract][Full Text] [Related]
6. Bayesian inference and comparison of stochastic transcription elongation models. Douglas J; Kingston R; Drummond AJ PLoS Comput Biol; 2020 Feb; 16(2):e1006717. PubMed ID: 32059006 [TBL] [Abstract][Full Text] [Related]
7. Quantifying how post-transcriptional noise and gene copy number variation bias transcriptional parameter inference from mRNA distributions. Fu X; Patel HP; Coppola S; Xu L; Cao Z; Lenstra TL; Grima R Elife; 2022 Oct; 11():. PubMed ID: 36250630 [TBL] [Abstract][Full Text] [Related]
8. Discrete distributional differential expression (D3E)--a tool for gene expression analysis of single-cell RNA-seq data. Delmans M; Hemberg M BMC Bioinformatics; 2016 Feb; 17():110. PubMed ID: 26927822 [TBL] [Abstract][Full Text] [Related]
9. Pathway dynamics can delineate the sources of transcriptional noise in gene expression. Ham L; Jackson M; Stumpf MP Elife; 2021 Oct; 10():. PubMed ID: 34636320 [TBL] [Abstract][Full Text] [Related]
11. Integrating single-molecule experiments and discrete stochastic models to understand heterogeneous gene transcription dynamics. Munsky B; Fox Z; Neuert G Methods; 2015 Sep; 85():12-21. PubMed ID: 26079925 [TBL] [Abstract][Full Text] [Related]
12. BayFish: Bayesian inference of transcription dynamics from population snapshots of single-molecule RNA FISH in single cells. Gómez-Schiavon M; Chen LF; West AE; Buchler NE Genome Biol; 2017 Sep; 18(1):164. PubMed ID: 28870226 [TBL] [Abstract][Full Text] [Related]
13. Bayesian inference for stochastic kinetic models using a diffusion approximation. Golightly A; Wilkinson DJ Biometrics; 2005 Sep; 61(3):781-8. PubMed ID: 16135029 [TBL] [Abstract][Full Text] [Related]
14. How input fluctuations reshape the dynamics of a biological switching system. Hu B; Kessler DA; Rappel WJ; Levine H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061910. PubMed ID: 23367979 [TBL] [Abstract][Full Text] [Related]
15. Studying stochastic systems biology of the cell with single-cell genomics data. Gorin G; Vastola JJ; Pachter L Cell Syst; 2023 Oct; 14(10):822-843.e22. PubMed ID: 37751736 [TBL] [Abstract][Full Text] [Related]
16. A Bayesian perspective on stochastic neurocontrol. Herzallah R; Lowe D IEEE Trans Neural Netw; 2008 May; 19(5):914-24. PubMed ID: 18467218 [TBL] [Abstract][Full Text] [Related]