BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 36494630)

  • 1. Drug response prediction using graph representation learning and Laplacian feature selection.
    Xie M; Lei X; Zhong J; Ouyang J; Li G
    BMC Bioinformatics; 2022 Dec; 23(Suppl 8):532. PubMed ID: 36494630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iGRLCDA: identifying circRNA-disease association based on graph representation learning.
    Zhang HY; Wang L; You ZH; Hu L; Zhao BW; Li ZW; Li YM
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35323894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GCFMCL: predicting miRNA-drug sensitivity using graph collaborative filtering and multi-view contrastive learning.
    Wei J; Zhuo L; Zhou Z; Lian X; Fu X; Yao X
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37427977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graph-DTI: A New Model for Drug-Target Interaction Prediction Based on Heterogenous Network Graph Embedding.
    Qu X; Du G; Hu J; Cai Y
    Curr Comput Aided Drug Des; 2023 Jul; ():. PubMed ID: 37448360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint feature selection and optimal bipartite graph learning for subspace clustering.
    Mei S; Zhao W; Gao Q; Yang M; Gao X
    Neural Netw; 2023 Jul; 164():408-418. PubMed ID: 37182344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MDA-GCNFTG: identifying miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph.
    Chu Y; Wang X; Dai Q; Wang Y; Wang Q; Peng S; Wei X; Qiu J; Salahub DR; Xiong Y; Wei DQ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34009265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GCNGAT: Drug-disease association prediction based on graph convolution neural network and graph attention network.
    Yang R; Fu Y; Zhang Q; Zhang L
    Artif Intell Med; 2024 Apr; 150():102805. PubMed ID: 38553169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of pairwise neighbor topologies and miRNA family and cluster attributes for miRNA-disease association prediction.
    Xuan P; Wang D; Cui H; Zhang T; Nakaguchi T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34634106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving drug response prediction based on two-space graph convolution.
    Peng W; Chen T; Liu H; Dai W; Yu N; Lan W
    Comput Biol Med; 2023 May; 158():106859. PubMed ID: 37023539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning Multi-Types of Neighbor Node Attributes and Semantics by Heterogeneous Graph Transformer and Multi-View Attention for Drug-Related Side-Effect Prediction.
    Xuan P; Li P; Cui H; Wang M; Nakaguchi T; Zhang T
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Biological Feature and Heterogeneous Network Representation Learning-Based Framework for Drug-Target Interaction Prediction.
    Liu L; Zhang Q; Wei Y; Zhao Q; Liao B
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of potential small molecule-miRNA associations based on heterogeneous network representation learning.
    Li J; Lin H; Wang Y; Li Z; Wu B
    Front Genet; 2022; 13():1079053. PubMed ID: 36531225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward drug-miRNA resistance association prediction by positional encoding graph neural network and multi-channel neural network.
    Zhao C; Wang H; Qi W; Liu S
    Methods; 2022 Nov; 207():81-89. PubMed ID: 36167292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Method to Predict Drug-Target Interactions Based on Large-Scale Graph Representation Learning.
    Zhao BW; You ZH; Hu L; Guo ZH; Wang L; Chen ZH; Wong L
    Cancers (Basel); 2021 Apr; 13(9):. PubMed ID: 33925568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MHCLMDA: multihypergraph contrastive learning for miRNA-disease association prediction.
    Peng W; He Z; Dai W; Lan W
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38243694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graph generative and adversarial strategy-enhanced node feature learning and self-calibrated pairwise attribute encoding for prediction of drug-related side effects.
    Xuan P; Xu K; Cui H; Nakaguchi T; Zhang T
    Front Pharmacol; 2023; 14():1257842. PubMed ID: 37731739
    [No Abstract]   [Full Text] [Related]  

  • 17. MSGCL: inferring miRNA-disease associations based on multi-view self-supervised graph structure contrastive learning.
    Ruan X; Jiang C; Lin P; Lin Y; Liu J; Huang S; Liu X
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36790856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ALDPI: adaptively learning importance of multi-scale topologies and multi-modality similarities for drug-protein interaction prediction.
    Hu K; Cui H; Zhang T; Sun C; Xuan P
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35108362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DGAMDA: Predicting miRNA-disease association based on dynamic graph attention network.
    Jia C; Wang F; Xing B; Li S; Zhao Y; Li Y; Wang Q
    Int J Numer Method Biomed Eng; 2024 May; 40(5):e3809. PubMed ID: 38472636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NEMPD: a network embedding-based method for predicting miRNA-disease associations by preserving behavior and attribute information.
    Ji BY; You ZH; Chen ZH; Wong L; Yi HC
    BMC Bioinformatics; 2020 Sep; 21(1):401. PubMed ID: 32912137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.