These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36494855)

  • 1. Predicting chemical structure using reinforcement learning with a stack-augmented conditional variational autoencoder.
    Kim H; Ko S; Kim BJ; Ryu SJ; Ahn J
    J Cheminform; 2022 Dec; 14(1):83. PubMed ID: 36494855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generative Model for Proposing Drug Candidates Satisfying Anticancer Properties Using a Conditional Variational Autoencoder.
    Joo S; Kim MS; Yang J; Park J
    ACS Omega; 2020 Aug; 5(30):18642-18650. PubMed ID: 32775866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditional Molecular Design with Deep Generative Models.
    Kang S; Cho K
    J Chem Inf Model; 2019 Jan; 59(1):43-52. PubMed ID: 30016587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MGCVAE: Multi-Objective Inverse Design via Molecular Graph Conditional Variational Autoencoder.
    Lee M; Min K
    J Chem Inf Model; 2022 Jun; 62(12):2943-2950. PubMed ID: 35666276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular generative model based on conditional variational autoencoder for de novo molecular design.
    Lim J; Ryu S; Kim JW; Kim WY
    J Cheminform; 2018 Jul; 10(1):31. PubMed ID: 29995272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep reinforcement learning for de novo drug design.
    Popova M; Isayev O; Tropsha A
    Sci Adv; 2018 Jul; 4(7):eaap7885. PubMed ID: 30050984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecule generation toward target protein (SARS-CoV-2) using reinforcement learning-based graph neural network via knowledge graph.
    Ranjan A; Kumar H; Kumari D; Anand A; Misra R
    Netw Model Anal Health Inform Bioinform; 2023; 12(1):13. PubMed ID: 36627927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Potent Compounds Using a Conditional Variational Autoencoder Based upon a New Structure-Potency Fingerprint.
    Janela T; Takeuchi K; Bajorath J
    Biomolecules; 2023 Feb; 13(2):. PubMed ID: 36830761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analyzing drop coalescence in microfluidic devices with a deep learning generative model.
    Zhu K; Cheng S; Kovalchuk N; Simmons M; Guo YK; Matar OK; Arcucci R
    Phys Chem Chem Phys; 2023 Jun; 25(23):15744-15755. PubMed ID: 37232111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LOGICS: Learning optimal generative distribution for designing de novo chemical structures.
    Bae B; Bae H; Nam H
    J Cheminform; 2023 Sep; 15(1):77. PubMed ID: 37674239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PaccMann
    Born J; Manica M; Oskooei A; Cadow J; Markert G; Rodríguez Martínez M
    iScience; 2021 Apr; 24(4):102269. PubMed ID: 33851095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FAME: Fragment-based Conditional Molecular Generation for Phenotypic Drug Discovery.
    Pham TH; Xie L; Zhang P
    Proc SIAM Int Conf Data Min; 2022; 2022():720-728. PubMed ID: 35509686
    [No Abstract]   [Full Text] [Related]  

  • 13. druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico.
    Kadurin A; Nikolenko S; Khrabrov K; Aliper A; Zhavoronkov A
    Mol Pharm; 2017 Sep; 14(9):3098-3104. PubMed ID: 28703000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing reinforcement learning for de novo molecular design applying self-attention mechanisms.
    Pereira TO; Abbasi M; Arrais JP
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37903414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generating 3D molecules conditional on receptor binding sites with deep generative models.
    Ragoza M; Masuda T; Koes DR
    Chem Sci; 2022 Mar; 13(9):2701-2713. PubMed ID: 35356675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unsupervised feature learning for electrocardiogram data using the convolutional variational autoencoder.
    Jang JH; Kim TY; Lim HS; Yoon D
    PLoS One; 2021; 16(12):e0260612. PubMed ID: 34852002
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Staker J; Marshall K; Leswing K; Robertson T; Halls MD; Goldberg A; Morisato T; Maeshima H; Ando T; Arai H; Sasago M; Fujii E; Matsuzawa NN
    J Phys Chem A; 2022 Sep; 126(34):5837-5852. PubMed ID: 35984470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometry-Based Molecular Generation With Deep Constrained Variational Autoencoder.
    Li C; Yao J; Wei W; Niu Z; Zeng X; Li J; Wang J
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):4852-4861. PubMed ID: 35171779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De Novo Direct Inverse QSPR/QSAR: Chemical Variational Autoencoder and Gaussian Mixture Regression Models.
    Nemoto K; Kaneko H
    J Chem Inf Model; 2023 Feb; 63(3):794-805. PubMed ID: 36635071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MoleGuLAR: Molecule Generation Using Reinforcement Learning with Alternating Rewards.
    Goel M; Raghunathan S; Laghuvarapu S; Priyakumar UD
    J Chem Inf Model; 2021 Dec; 61(12):5815-5826. PubMed ID: 34866384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.