BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36494904)

  • 1. N
    Calabretta LO; Yang J; Raines RT
    J Pept Sci; 2023 May; 29(5):e3468. PubMed ID: 36494904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Counterion-mediated membrane penetration: cationic cell-penetrating peptides overcome Born energy barrier by ion-pairing with phospholipids.
    Esbjörner EK; Lincoln P; Nordén B
    Biochim Biophys Acta; 2007 Jun; 1768(6):1550-8. PubMed ID: 17466938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating Force Fields for the Computational Prediction of Ionized Arginine and Lysine Side-Chains Partitioning into Lipid Bilayers and Octanol.
    Sun D; Forsman J; Woodward CE
    J Chem Theory Comput; 2015 Apr; 11(4):1775-91. PubMed ID: 26574387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Canavanine versus arginine: Prospects for cell-penetrating peptides.
    Calabretta LO; Thomas VM; Raines RT
    Tetrahedron Lett; 2022 Jun; 99():. PubMed ID: 35873104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of helicity and hydrophobicity on cell-penetrating ability of arginine-rich peptides.
    Oba M; Nakajima S; Misao K; Yokoo H; Tanaka M
    Bioorg Med Chem; 2023 Aug; 91():117409. PubMed ID: 37441862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-Surface Interactions on Arginine-Rich Cell-Penetrating Peptides Allow for Multiplex Modes of Internalization.
    Futaki S; Nakase I
    Acc Chem Res; 2017 Oct; 50(10):2449-2456. PubMed ID: 28910080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current Understanding of Physicochemical Mechanisms for Cell Membrane Penetration of Arginine-rich Cell Penetrating Peptides: Role of Glycosaminoglycan Interactions.
    Takechi-Haraya Y; Saito H
    Curr Protein Pept Sci; 2018; 19(6):623-630. PubMed ID: 29332576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel amphipathic cell-penetrating peptide based on the N-terminal glycosaminoglycan binding region of human apolipoprotein E.
    Ohgita T; Takechi-Haraya Y; Nadai R; Kotani M; Tamura Y; Nishikiori K; Nishitsuji K; Uchimura K; Hasegawa K; Sakai-Kato K; Akaji K; Saito H
    Biochim Biophys Acta Biomembr; 2019 Mar; 1861(3):541-549. PubMed ID: 30562499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zwitterionic guanidine-based oligomers mimicking cell-penetrating peptides as a nontoxic alternative to cationic polymers to enhance the cellular uptake of micelles.
    Kim Y; Binauld S; Stenzel MH
    Biomacromolecules; 2012 Oct; 13(10):3418-26. PubMed ID: 22946476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coiled-Coil-Mediated Activation of Oligoarginine Cell-Penetrating Peptides.
    Bode SA; Kruis IC; Adams HP; Boelens WC; Pruijn GJ; van Hest JC; Löwik DW
    Chembiochem; 2017 Jan; 18(2):185-188. PubMed ID: 27870530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of pentapeptides at interfaces: salt bridge and cation-pi interactions.
    Aliste MP; MacCallum JL; Tieleman DP
    Biochemistry; 2003 Aug; 42(30):8976-87. PubMed ID: 12885230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-penetrating helical peptides having l-arginines and five-membered ring α,α-disubstituted α-amino acids.
    Kato T; Oba M; Nishida K; Tanaka M
    Bioconjug Chem; 2014 Oct; 25(10):1761-8. PubMed ID: 25188671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oligoarginine vectors for intracellular delivery: role of arginine side-chain orientation in chain length-dependent destabilization of lipid membranes.
    Bouchet AM; Lairion F; Ruysschaert JM; Lensink MF
    Chem Phys Lipids; 2012 Jan; 165(1):89-96. PubMed ID: 22119850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of delivery carriers for plasmid DNA by conjugation of a helical template to oligoarginine.
    Yokoo H; Misawa T; Kato T; Tanaka M; Demizu Y; Oba M
    Bioorg Med Chem; 2022 Oct; 72():116997. PubMed ID: 36088811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative measures of lipophilicity: from octanol-water partitioning to IAM retention.
    Giaginis C; Tsantili-Kakoulidou A
    J Pharm Sci; 2008 Aug; 97(8):2984-3004. PubMed ID: 18553641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations.
    Witte K; Olausson BE; Walrant A; Alves ID; Vogel A
    Biochim Biophys Acta; 2013 Feb; 1828(2):824-33. PubMed ID: 23174351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Backbone rigidity and static presentation of guanidinium groups increases cellular uptake of arginine-rich cell-penetrating peptides.
    Lättig-Tünnemann G; Prinz M; Hoffmann D; Behlke J; Palm-Apergi C; Morano I; Herce HD; Cardoso MC
    Nat Commun; 2011 Aug; 2():453. PubMed ID: 21878907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane interactions of two arginine-rich peptides with different cell internalization capacities.
    Walrant A; Vogel A; Correia I; Lequin O; Olausson BE; Desbat B; Sagan S; Alves ID
    Biochim Biophys Acta; 2012 Jul; 1818(7):1755-63. PubMed ID: 22402267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionpair-π interactions favor cell penetration of arginine/tryptophan-rich cell-penetrating peptides.
    Walrant A; Bauzá A; Girardet C; Alves ID; Lecomte S; Illien F; Cardon S; Chaianantakul N; Pallerla M; Burlina F; Frontera A; Sagan S
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183098. PubMed ID: 31676372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH dependence of the relative hydrophobicity and lipophilicity of amino acids and peptides measured by aqueous two-phase and octanol-buffer partitioning.
    Gulyaeva N; Zaslavsky A; Lechner P; Chait A; Zaslavsky B
    J Pept Res; 2003 Feb; 61(2):71-9. PubMed ID: 12492901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.