These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 36496021)
21. An overview of geoengineering of climate using stratospheric sulphate aerosols. Rasch PJ; Tilmes S; Turco RP; Robock A; Oman L; Chen CC; Stenchikov GL; Garcia RR Philos Trans A Math Phys Eng Sci; 2008 Nov; 366(1882):4007-37. PubMed ID: 18757276 [TBL] [Abstract][Full Text] [Related]
22. Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions. Artaxo P; Rizzo LV; Brito JF; Barbosa HM; Arana A; Sena ET; Cirino GG; Bastos W; Martin ST; Andreae MO Faraday Discuss; 2013; 165():203-35. PubMed ID: 24601004 [TBL] [Abstract][Full Text] [Related]
23. Future extreme climate changes linked to global warming intensity. Wang X; Jiang D; Lang X Sci Bull (Beijing); 2017 Dec; 62(24):1673-1680. PubMed ID: 36659388 [TBL] [Abstract][Full Text] [Related]
24. Are persistent aircraft trails a threat to the environment and health? Deruelle F Rev Environ Health; 2022 Sep; 37(3):407-421. PubMed ID: 34233386 [TBL] [Abstract][Full Text] [Related]
25. Potential ecological impacts of climate intervention by reflecting sunlight to cool Earth. Zarnetske PL; Gurevitch J; Franklin J; Groffman PM; Harrison CS; Hellmann JJ; Hoffman FM; Kothari S; Robock A; Tilmes S; Visioni D; Wu J; Xia L; Yang CE Proc Natl Acad Sci U S A; 2021 Apr; 118(15):. PubMed ID: 33876741 [TBL] [Abstract][Full Text] [Related]
26. Probabilistic evaluation of the impact of compound dry-hot events on global maize yields. Feng S; Hao Z; Zhang X; Hao F Sci Total Environ; 2019 Nov; 689():1228-1234. PubMed ID: 31466161 [TBL] [Abstract][Full Text] [Related]
27. Risk of short-term biodiversity loss under more persistent precipitation regimes. Reynaert S; De Boeck HJ; Verbruggen E; Verlinden M; Flowers N; Nijs I Glob Chang Biol; 2021 Apr; 27(8):1614-1626. PubMed ID: 33355970 [TBL] [Abstract][Full Text] [Related]
28. Modelling climate change impacts on the seasonality of water resources in the Upper Ca River Watershed in Southeast Asia. Giang PQ; Toshiki K; Sakata M; Kunikane S; Vinh TQ ScientificWorldJournal; 2014; 2014():279135. PubMed ID: 25243206 [TBL] [Abstract][Full Text] [Related]
29. The other side of droughts: wet extremes and topography as buffers of negative drought effects in an Amazonian forest. Esteban EJL; Castilho CV; Melgaço KL; Costa FRC New Phytol; 2021 Feb; 229(4):1995-2006. PubMed ID: 33048346 [TBL] [Abstract][Full Text] [Related]
30. Investigating the potential impact of 1.5, 2 and 3 °C global warming levels on crop suitability and planting season over West Africa. Egbebiyi TS; Crespo O; Lennard C; Zaroug M; Nikulin G; Harris I; Price J; Forstenhäusler N; Warren R PeerJ; 2020; 8():e8851. PubMed ID: 32411508 [TBL] [Abstract][Full Text] [Related]
31. Carbon-temperature-water change analysis for peanut production under climate change: a prototype for the AgMIP coordinated climate-crop modeling project (C3MP). Ruane AC; McDermid S; Rosenzweig C; Baigorria GA; Jones JW; Romero CC; Dewayne Cecil L Glob Chang Biol; 2014 Feb; 20(2):394-407. PubMed ID: 24115520 [TBL] [Abstract][Full Text] [Related]
32. Multifaceted responses of vegetation to average and extreme climate change over global drylands. He L; Guo J; Yang W; Jiang Q; Chen L; Tang K Sci Total Environ; 2023 Feb; 858(Pt 2):159942. PubMed ID: 36343828 [TBL] [Abstract][Full Text] [Related]
33. Exposure to climate change information predicts public support for solar geoengineering in Singapore and the United States. Rosenthal S; Irvine PJ; Cummings CL; Ho SS Sci Rep; 2023 Nov; 13(1):19874. PubMed ID: 37963957 [TBL] [Abstract][Full Text] [Related]
34. Quantifying the potential impacts of climate change on irrigation demand, crop yields, and green water scarcity in the New Jersey Coastal Plain. Tijjani SB; Giri S; Woznicki SA Sci Total Environ; 2022 Sep; 838(Pt 4):156538. PubMed ID: 35679922 [TBL] [Abstract][Full Text] [Related]
35. Projected local rain events due to climate change and the impacts on waterborne diseases in Vancouver, British Columbia, Canada. Chhetri BK; Galanis E; Sobie S; Brubacher J; Balshaw R; Otterstatter M; Mak S; Lem M; Lysyshyn M; Murdock T; Fleury M; Zickfeld K; Zubel M; Clarkson L; Takaro TK Environ Health; 2019 Dec; 18(1):116. PubMed ID: 31888648 [TBL] [Abstract][Full Text] [Related]
36. Quantifying likelihoods of extreme occurrences causing maize yield reduction at the global scale. Feng S; Hao Z Sci Total Environ; 2020 Feb; 704():135250. PubMed ID: 31818572 [TBL] [Abstract][Full Text] [Related]
37. Precipitation amount and event size interact to reduce ecosystem functioning during dry years in a mesic grassland. Felton AJ; Slette IJ; Smith MD; Knapp AK Glob Chang Biol; 2020 Feb; 26(2):658-668. PubMed ID: 31386797 [TBL] [Abstract][Full Text] [Related]
38. Compound hydroclimatic extremes in a semi-arid grassland: Drought, deluge, and the carbon cycle. Hoover DL; Hajek OL; Smith MD; Wilkins K; Slette IJ; Knapp AK Glob Chang Biol; 2022 Apr; 28(8):2611-2621. PubMed ID: 35076159 [TBL] [Abstract][Full Text] [Related]
39. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes. Lehmann J; Coumou D Sci Rep; 2015 Dec; 5():17491. PubMed ID: 26657163 [TBL] [Abstract][Full Text] [Related]
40. The Role of Affect in Attitude Formation toward New Technologies: The Case of Stratospheric Aerosol Injection. Merk C; Pönitzsch G Risk Anal; 2017 Dec; 37(12):2289-2304. PubMed ID: 28244119 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]