These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36496034)

  • 1. Voltage-dependent anion channel 2 (VDAC2) facilitates the accumulation of rice stripe virus in the vector Laodelphax striatellus.
    Zhang L; Li L; Huang L; Li X; Xu C; Hu W; Sun Y; Liu F; Li Y
    Virus Res; 2023 Jan; 324():199019. PubMed ID: 36496034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The small brown planthopper (Laodelphax striatellus) as a vector of the rice stripe virus.
    Kil EJ; Kim D
    Arch Insect Biochem Physiol; 2023 Feb; 112(2):e21992. PubMed ID: 36575628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative Splicing Landscape of Small Brown Planthopper and Different Response of JNK2 Isoforms to Rice Stripe Virus Infection.
    Tong L; Chen X; Wang W; Xiao Y; Yu J; Lu H; Cui F
    J Virol; 2022 Jan; 96(2):e0171521. PubMed ID: 34757837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rice stripe virus-derived siRNAs play different regulatory roles in rice and in the insect vector Laodelphax striatellus.
    Yang M; Xu Z; Zhao W; Liu Q; Li Q; Lu L; Liu R; Zhang X; Cui F
    BMC Plant Biol; 2018 Oct; 18(1):219. PubMed ID: 30286719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of Rice stripe virus in a transovarial transmission cycle during the development and reproduction of its vector, Laodelphax striatellus.
    Okuda M; Shiba T; Hirae M
    Virus Genes; 2017 Dec; 53(6):898-905. PubMed ID: 28589385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial feeding Rice stripe virus enables efficient virus infection of Laodelphax striatellus.
    Huo Y; Chen L; Su L; Wu Y; Chen X; Fang R; Zhang L
    J Virol Methods; 2016 Sep; 235():139-143. PubMed ID: 27283882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The α-tubulin of Laodelphax striatellus mediates the passage of rice stripe virus (RSV) and enhances horizontal transmission.
    Li Y; Chen D; Hu J; Zhang K; Kang L; Chen Y; Huang L; Zhang L; Xiang Y; Song Q; Liu F
    PLoS Pathog; 2020 Aug; 16(8):e1008710. PubMed ID: 32817722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of Laodelphax striatellus in response to Rice stripe virus infection reveal a potential role of ZFP36L1 in restriction of viral proliferation.
    Huang HJ; Yan XT; Wang X; Qi YH; Lu G; Chen JP; Zhang CX; Li JM
    J Proteomics; 2021 May; 239():104184. PubMed ID: 33711487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat shock cognate protein 70 is required for rice stripe tenuivirus accumulation and transmission in small brown planthopper.
    Li J; Pan W; Zhao S; Liang C
    Arch Virol; 2022 Mar; 167(3):839-848. PubMed ID: 35113245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribavirin targets sugar transporter 6 to suppress acquisition and transmission of rice stripe tenuivirus by its vector Laodelphax striatellus.
    Hajano JU; Raza A; Zhang L; Liu W; Wang X
    Pest Manag Sci; 2020 Dec; 76(12):4086-4092. PubMed ID: 32542993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Transcriptome Analysis of Chemoreception Organs of
    Li Y; Zhang Y; Xiang Y; Chen D; Hu J; Liu F
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silencing suppressors of rice black-streaked dwarf virus and rice stripe virus hijack the 26S proteasome of Laodelphax striatellus to facilitate virus accumulation and transmission.
    Li Y; Zhu L; Gao J; Ma H; Li C; Song Y; Zhu X; Zhu C
    Pest Manag Sci; 2022 Jul; 78(7):2940-2951. PubMed ID: 35439336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Massively parallel pyrosequencing-based transcriptome analyses of small brown planthopper (Laodelphax striatellus), a vector insect transmitting rice stripe virus (RSV).
    Zhang F; Guo H; Zheng H; Zhou T; Zhou Y; Wang S; Fang R; Qian W; Chen X
    BMC Genomics; 2010 May; 11():303. PubMed ID: 20462456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the Association between the Energy Metabolism of the Insect Vector
    Zhang L; Li X; Chen Y; Kang L; Zhang J; Li Y; Liu F
    Viruses; 2022 Oct; 14(10):. PubMed ID: 36298853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laodelphax striatellus Atg8 facilitates Rice stripe virus infection in an autophagy-independent manner.
    Yu YL; Zhang MT; Huo Y; Tang JL; Liu Q; Chen XY; Fang RX; Zhang LL
    Insect Sci; 2021 Apr; 28(2):315-329. PubMed ID: 32108430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different pathogenicities of Rice stripe virus from the insect vector and from viruliferous plants.
    Zhao W; Yang P; Kang L; Cui F
    New Phytol; 2016 Apr; 210(1):196-207. PubMed ID: 26585422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Five proteins of Laodelphax striatellus are potentially involved in the interactions between rice stripe virus and vector.
    Li S; Xiong R; Wang X; Zhou Y
    PLoS One; 2011; 6(10):e26585. PubMed ID: 22028913
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Xu Y; Fu S; Tao X; Zhou X
    Annu Rev Phytopathol; 2021 Aug; 59():351-371. PubMed ID: 34077238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting Rice stripe virus (RSV) in the small brown planthopper (Laodelphax striatellus) with high specificity by RT-PCR.
    Lijun C; Xizhi M; Lin K; Kejing D; Shouyuan Z; Changben L
    J Virol Methods; 2003 Sep; 112(1-2):115-20. PubMed ID: 12951219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Population diversity of rice stripe virus-derived siRNAs in three different hosts and RNAi-based antiviral immunity in Laodelphgax striatellus.
    Xu Y; Huang L; Fu S; Wu J; Zhou X
    PLoS One; 2012; 7(9):e46238. PubMed ID: 23029445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.