These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36496075)

  • 21. Determination of Protein Phase Diagrams by Centrifugation.
    Milkovic NM; Mittag T
    Methods Mol Biol; 2020; 2141():685-702. PubMed ID: 32696384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Interpretable Machine-Learning Algorithm to Predict Disordered Protein Phase Separation Based on Biophysical Interactions.
    Cai H; Vernon RM; Forman-Kay JD
    Biomolecules; 2022 Aug; 12(8):. PubMed ID: 36009025
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-molecule and ensemble methods to probe RNP nucleation and condensate properties.
    Rhine K; Skanchy S; Myong S
    Methods; 2022 Jan; 197():74-81. PubMed ID: 33610691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs.
    Lin Y; Currie SL; Rosen MK
    J Biol Chem; 2017 Nov; 292(46):19110-19120. PubMed ID: 28924037
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computing, Analyzing, and Comparing the Radius of Gyration and Hydrodynamic Radius in Conformational Ensembles of Intrinsically Disordered Proteins.
    Ahmed MC; Crehuet R; Lindorff-Larsen K
    Methods Mol Biol; 2020; 2141():429-445. PubMed ID: 32696370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biophysics of Phase Separation of Disordered Proteins Is Governed by Balance between Short- And Long-Range Interactions.
    Hazra MK; Levy Y
    J Phys Chem B; 2021 Mar; 125(9):2202-2211. PubMed ID: 33629837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intrinsically disordered plant protein PARCL colocalizes with RNA in phase-separated condensates whose formation can be regulated by mutating the PLD.
    Ostendorp A; Ostendorp S; Zhou Y; Chaudron Z; Wolffram L; Rombi K; von Pein L; Falke S; Jeffries CM; Svergun DI; Betzel C; Morris RJ; Kragler F; Kehr J
    J Biol Chem; 2022 Dec; 298(12):102631. PubMed ID: 36273579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequence determinants of in cell condensate morphology, dynamics, and oligomerization as measured by number and brightness analysis.
    Emenecker RJ; Holehouse AS; Strader LC
    Cell Commun Signal; 2021 Jun; 19(1):65. PubMed ID: 34090478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of electrostatic forces on the association kinetics and conformational ensemble of an intrinsically disordered protein.
    Cook EC; Creamer TP
    Proteins; 2020 Dec; 88(12):1607-1619. PubMed ID: 32654182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Side chain electrostatic interactions and pH-dependent expansion of the intrinsically disordered, highly acidic carboxyl-terminus of γ-tubulin.
    Payliss BJ; Vogel J; Mittermaier AK
    Protein Sci; 2019 Jun; 28(6):1095-1105. PubMed ID: 30968464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular Details of Protein Condensates Probed by Microsecond Long Atomistic Simulations.
    Zheng W; Dignon GL; Jovic N; Xu X; Regy RM; Fawzi NL; Kim YC; Best RB; Mittal J
    J Phys Chem B; 2020 Dec; 124(51):11671-11679. PubMed ID: 33302617
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The (un)structural biology of biomolecular liquid-liquid phase separation using NMR spectroscopy.
    Murthy AC; Fawzi NL
    J Biol Chem; 2020 Feb; 295(8):2375-2384. PubMed ID: 31911439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrostatic interactions in molecular recognition of intrinsically disordered proteins.
    Yang J; Zeng Y; Liu Y; Gao M; Liu S; Su Z; Huang Y
    J Biomol Struct Dyn; 2020 Oct; 38(16):4883-4894. PubMed ID: 31709918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ATP-responsive biomolecular condensates tune bacterial kinase signaling.
    Saurabh S; Chong TN; Bayas C; Dahlberg PD; Cartwright HN; Moerner WE; Shapiro L
    Sci Adv; 2022 Feb; 8(7):eabm6570. PubMed ID: 35171683
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sequence-Dependent Material Properties of Biomolecular Codensates and their Relation to Dilute Phase Conformations.
    Devarajan DS; Wang J; Szała-Mendyk B; Rekhi S; Nikoubashman A; Kim YC; Mittal J
    bioRxiv; 2024 Jan; ():. PubMed ID: 37215004
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of ATP in solubilizing RNA-binding protein fused in sarcoma.
    Aida H; Shigeta Y; Harada R
    Proteins; 2022 Aug; 90(8):1606-1612. PubMed ID: 35297101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Different states and the associated fates of biomolecular condensates.
    Ranganathan S; Liu J; Shakhnovich E
    Essays Biochem; 2022 Dec; 66(7):849-862. PubMed ID: 36350032
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cross-Talk of Cation-π Interactions with Electrostatic and Aromatic Interactions: A Salt-Dependent Trade-off in Biomolecular Condensates.
    Hazra MK; Levy Y
    J Phys Chem Lett; 2023 Sep; 14(38):8460-8469. PubMed ID: 37721444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amphiphilic proteins coassemble into multiphasic condensates and act as biomolecular surfactants.
    Kelley FM; Favetta B; Regy RM; Mittal J; Schuster BS
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34916288
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.