These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 36496204)
1. Mechanistic aspects of the transamination reactions catalyzed by D-amino acid transaminase from Haliscomenobacter hydrossis. Bakunova AK; Kostyukov AA; Kuzmin VA; Popov VO; Bezsudnova EY Biochim Biophys Acta Proteins Proteom; 2023 Feb; 1871(2):140886. PubMed ID: 36496204 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of D-Cycloserine Inhibition of D-Amino Acid Transaminase from Haliscomenobacter hydrossis. Bakunova AK; Matyuta IO; Nikolaeva AY; Boyko KM; Popov VO; Bezsudnova EY Biochemistry (Mosc); 2023 May; 88(5):687-697. PubMed ID: 37331714 [TBL] [Abstract][Full Text] [Related]
3. The Uncommon Active Site of D-Amino Acid Transaminase from Bakunova AK; Nikolaeva AY; Rakitina TV; Isaikina TY; Khrenova MG; Boyko KM; Popov VO; Bezsudnova EY Molecules; 2021 Aug; 26(16):. PubMed ID: 34443642 [TBL] [Abstract][Full Text] [Related]
4. To the Understanding of Catalysis by D-Amino Acid Transaminases: A Case Study of the Enzyme from Shilova SA; Khrenova MG; Matyuta IO; Nikolaeva AY; Rakitina TV; Klyachko NL; Minyaev ME; Boyko KM; Popov VO; Bezsudnova EY Molecules; 2023 Feb; 28(5):. PubMed ID: 36903355 [TBL] [Abstract][Full Text] [Related]
6. Stereospecificity of reactions catalyzed by bacterial D-amino acid transaminase. Martínez del Pozo A; Merola M; Ueno H; Manning JM; Tanizawa K; Nishimura K; Soda K; Ringe D J Biol Chem; 1989 Oct; 264(30):17784-9. PubMed ID: 2808352 [TBL] [Abstract][Full Text] [Related]
7. Nonstereospecific transamination catalyzed by pyridoxal phosphate-dependent amino acid racemases of broad substrate specificity. Lim YH; Yoshimura T; Kurokawa Y; Esaki N; Soda K J Biol Chem; 1998 Feb; 273(7):4001-5. PubMed ID: 9461589 [TBL] [Abstract][Full Text] [Related]
8. Stereochemistry of the transamination reaction catalyzed by aminodeoxychorismate lyase from Escherichia coli: close relationship between fold type and stereochemistry. Jhee KH; Yoshimura T; Miles EW; Takeda S; Miyahara I; Hirotsu K; Soda K; Kawata Y; Esaki N J Biochem; 2000 Oct; 128(4):679-86. PubMed ID: 11011151 [TBL] [Abstract][Full Text] [Related]
9. Incorporation of pyridoxal-5'-phosphate into the apoenzyme: A structural study of D-amino acid transaminase from Haliscomenobacter hydrossis. Bakunova AK; Matyuta IO; Minyaev ME; Boyko KM; Popov VO; Bezsudnova EY Biochim Biophys Acta Proteins Proteom; 2024 Oct; 1873(1):141056. PubMed ID: 39406293 [TBL] [Abstract][Full Text] [Related]
10. Multifunctionality of arginine residues in the active sites of non-canonical d-amino acid transaminases. Bakunova AK; Matyuta IO; Minyaev ME; Isaikina TY; Boyko KM; Popov VO; Bezsudnova EY Arch Biochem Biophys; 2024 Jun; 756():110011. PubMed ID: 38649133 [TBL] [Abstract][Full Text] [Related]
11. Pre-steady-state kinetics of Escherichia coli aspartate aminotransferase catalyzed reactions and thermodynamic aspects of its substrate specificity. Kuramitsu S; Hiromi K; Hayashi H; Morino Y; Kagamiyama H Biochemistry; 1990 Jun; 29(23):5469-76. PubMed ID: 2201406 [TBL] [Abstract][Full Text] [Related]
12. Analysis of conformationally restricted alpha-ketoglutarate analogues as substrates of dehydrogenases and aminotransferases. Denton TT; Thompson CM; Cooper AJ Anal Biochem; 2001 Nov; 298(2):265-74. PubMed ID: 11700982 [TBL] [Abstract][Full Text] [Related]
13. Determinants of substrate specificity in omega-aminotransferases. Markova M; Peneff C; Hewlins MJ; Schirmer T; John RA J Biol Chem; 2005 Oct; 280(43):36409-16. PubMed ID: 16096275 [TBL] [Abstract][Full Text] [Related]
14. Effects of the E177K mutation in D-amino acid transaminase. Studies on an essential coenzyme anchoring group that contributes to stereochemical fidelity. van Ophem PW; Peisach D; Erickson SD; Soda K; Ringe D; Manning JM Biochemistry; 1999 Jan; 38(4):1323-31. PubMed ID: 9930994 [TBL] [Abstract][Full Text] [Related]
15. Stereospecificity for the hydrogen transfer and molecular evolution of pyridoxal enzymes. Yoshimura T; Jhee KH; Soda K Biosci Biotechnol Biochem; 1996 Feb; 60(2):181-7. PubMed ID: 9063963 [TBL] [Abstract][Full Text] [Related]
17. Partial reactions of bacterial D-amino acid transaminase with asparagine substituted for the lysine that binds coenzyme pyridoxal 5'-phosphate. Yoshimura T; Bhatia MB; Manning JM; Ringe D; Soda K Biochemistry; 1992 Dec; 31(47):11748-54. PubMed ID: 1445909 [TBL] [Abstract][Full Text] [Related]
18. Effect of Ketosubstrate on the Product Yield in the Transamination Reaction Catalyzed by Transaminase from Thermoproteus uzoniensis. Bezsudnova EY; Stekhanova TN; Boyko KM; Popov VO Dokl Biochem Biophys; 2020 Jan; 490(1):5-8. PubMed ID: 32342302 [TBL] [Abstract][Full Text] [Related]
19. Structural basis for D-amino acid transamination by the pyridoxal 5'-phosphate-dependent catalytic antibody 15A9. Golinelli-Pimpaneau B; Lüthi C; Christen P J Biol Chem; 2006 Aug; 281(33):23969-77. PubMed ID: 16790434 [TBL] [Abstract][Full Text] [Related]