These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36496301)

  • 1. Corrigendum to "Machine learning for classifying and predicting grape maturity indices using absorbance and fluorescence spectra" [Food Chemistry 403 (2023) 134321].
    Armstrong CEJ; Gilmore AM; Boss PK; Pagay V; Jeffery DW
    Food Chem; 2023 Apr; 406():135055. PubMed ID: 36496301
    [No Abstract]   [Full Text] [Related]  

  • 2. Machine learning for classifying and predicting grape maturity indices using absorbance and fluorescence spectra.
    Armstrong CEJ; Gilmore AM; Boss PK; Pagay V; Jeffery DW
    Food Chem; 2023 Mar; 403():134321. PubMed ID: 36191418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maturity Prediction in Yellow Peach (
    Scalisi A; Pelliccia D; O'Connell MG
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33212792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between viticultural climatic indices and grape maturity in Australia.
    Jarvis C; Barlow E; Darbyshire R; Eckard R; Goodwin I
    Int J Biometeorol; 2017 Oct; 61(10):1849-1862. PubMed ID: 28540490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning framework for intelligent prediction of compost maturity towards automation of food waste composting system.
    Wan X; Li J; Xie L; Wei Z; Wu J; Wah Tong Y; Wang X; He Y; Zhang J
    Bioresour Technol; 2022 Dec; 365():128107. PubMed ID: 36243261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of "Sugranineteen" Table Grape Maturation Using Destructive and Auto-Fluorescence Methods.
    Hamie N; Tarricone L; Verrastro V; Natrella G; Faccia M; Gambacorta G
    Foods; 2022 Feb; 11(5):. PubMed ID: 35267296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Grape Sugar Content under Quality Attributes Using Normalized Difference Vegetation Index Data and Automated Machine Learning.
    Kasimati A; Espejo-García B; Darra N; Fountas S
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of anthocyanins in grape (Vitis vinifera L.) berries using a noninvasive chlorophyll fluorescence method.
    Agati G; Meyer S; Matteini P; Cerovic ZG
    J Agric Food Chem; 2007 Feb; 55(4):1053-61. PubMed ID: 17261018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation Study between the Organic Compounds and Ripening Stages of Oil Palm Fruitlets Based on the Raman Spectra.
    Azmi MHIM; Hashim FH; Huddin AB; Sajab MS
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethephon foliar application: Impact on the phenolic and technological Tempranillo grapes maturity.
    López R; Portu J; González-Arenzana L; Garijo P; Gutiérrez AR; Santamaría P
    J Food Sci; 2021 Mar; 86(3):803-812. PubMed ID: 33590528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in Red Wine Composition during Bottle Aging: Impacts of Grape Variety, Vineyard Location, Maturity, and Oxygen Availability during Aging.
    Zhang X; Kontoudakis N; Šuklje K; Antalick G; Blackman JW; Rutledge DN; Schmidtke LM; Clark AC
    J Agric Food Chem; 2020 Nov; 68(47):13331-13343. PubMed ID: 32066244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of the Fluorescence Spectra Characteristics of Dissolved Organic Matter Derived from Organic Waste Composting Based on Projection Pursuit Classification (PPC).
    Wei ZM; Wang XL; Pan HW; Zhao Y; Xie XY; Zhao Y; Zhang LX; Zhao TZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Oct; 35(10):2940-5. PubMed ID: 26904847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of a multiparametric optical sensor for determining in situ the maturity components of red and white Vitis vinifera wine grapes.
    Agati G; D'Onofrio C; Ducci E; Cuzzola A; Remorini D; Tuccio L; Lazzini F; Mattii G
    J Agric Food Chem; 2013 Dec; 61(50):12211-8. PubMed ID: 24279372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of the Maturity of Greenhouse Grapes Based on Imaging Technology.
    Wei X; Wu L; Ge D; Yao M; Bai Y
    Plant Phenomics; 2022; 2022():9753427. PubMed ID: 35445201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning assisted reflectance spectral characterisation of coronary thrombi correlates with microvascular injury in patients with ST-segment elevation acute coronary syndrome.
    Kotronias RA; Fielding K; Greenhalgh C; Lee R; Alkhalil M; Marin F; Emfietzoglou M; Banning AP; Vallance C; Channon KM; De Maria GL
    Front Cardiovasc Med; 2022; 9():930015. PubMed ID: 36204570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Grape Berry Maturity on Juice and Base Wine Composition and Foaming Properties of Sparkling Wines from the Champagne Region.
    Liu PH; Vrigneau C; Salmon T; Hoang DA; Boulet JC; Jégou S; Marchal R
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29882831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a hyperspectral imaging system to quantify leaf-scale chlorophyll, nitrogen and chlorophyll fluorescence parameters in grapevine.
    Yang Z; Tian J; Feng K; Gong X; Liu J
    Plant Physiol Biochem; 2021 Sep; 166():723-737. PubMed ID: 34214782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simplified method for the screening of technological maturity of red grape and total phenolic compounds of red grape skin: application of the characteristic vector method to near-infrared spectra.
    Nogales-Bueno J; Ayala F; Hernández-Hierro JM; Rodríguez-Pulido FJ; Echávarri JF; Heredia FJ
    J Agric Food Chem; 2015 May; 63(17):4284-90. PubMed ID: 25897561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Reliable Method to Recognize Soybean Seed Maturation Stages Based on Autofluorescence-Spectral Imaging Combined With Machine Learning Algorithms.
    Batista TB; Mastrangelo CB; de Medeiros AD; Petronilio ACP; Fonseca de Oliveira GR; Dos Santos IL; Crusciol CAC; Amaral da Silva EA
    Front Plant Sci; 2022; 13():914287. PubMed ID: 35774807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corrigendum: "A machine learning texture model for classifying lung cancer subtypes using preliminary bronchoscopic findings" [Med Phys. 45, 5509-5514 (2018)].
    Med Phys; 2020 Jan; 47(1):289. PubMed ID: 31950536
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.