BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36496372)

  • 1. Highly efficient fermentation of 5-keto-D-fructose with Gluconobacter oxydans at different scales.
    Battling S; Engel T; Herweg E; Niehoff PJ; Pesch M; Scholand T; Schöpping M; Sonntag N; Büchs J
    Microb Cell Fact; 2022 Dec; 21(1):255. PubMed ID: 36496372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of the potential sweetener 5-ketofructose from fructose in fed-batch cultivation with Gluconobacter oxydans.
    Herweg E; Schöpping M; Rohr K; Siemen A; Frank O; Hofmann T; Deppenmeier U; Büchs J
    Bioresour Technol; 2018 Jul; 259():164-172. PubMed ID: 29550669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel plasmid-free Gluconobacter oxydans strains for production of the natural sweetener 5-ketofructose.
    Battling S; Wohlers K; Igwe C; Kranz A; Pesch M; Wirtz A; Baumgart M; Büchs J; Bott M
    Microb Cell Fact; 2020 Mar; 19(1):54. PubMed ID: 32131833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans.
    Li K; Mao X; Liu L; Lin J; Sun M; Wei D; Yang S
    Microb Cell Fact; 2016 Jul; 15(1):121. PubMed ID: 27392695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of 5-ketofructose from fructose or sucrose using genetically modified Gluconobacter oxydans strains.
    Siemen A; Kosciow K; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1699-1710. PubMed ID: 29279957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation.
    Yuan J; Wu M; Lin J; Yang L
    BMC Biotechnol; 2016 May; 16(1):42. PubMed ID: 27189063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of 5-keto-d-gluconate production by a recombinant Gluconobacter oxydans using a dissolved oxygen control strategy.
    Yuan J; Wu M; Lin J; Yang L
    J Biosci Bioeng; 2016 Jul; 122(1):10-6. PubMed ID: 26896860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directional enhancement of 2-keto-gluconic acid production from enzymatic hydrolysate by acetic acid-mediated bio-oxidation with Gluconobacter oxydans.
    Dai L; Jiang W; Jia R; Zhou X; Xu Y
    Bioresour Technol; 2022 Mar; 348():126811. PubMed ID: 35131459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Pseudomonas putida for production of the natural sweetener 5-ketofructose from fructose or sucrose by periplasmic oxidation with a heterologous fructose dehydrogenase.
    Wohlers K; Wirtz A; Reiter A; Oldiges M; Baumgart M; Bott M
    Microb Biotechnol; 2021 Nov; 14(6):2592-2604. PubMed ID: 34437751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a novel defined minimal medium for Gluconobacter oxydans 621H by systematic investigation of metabolic demands.
    Battling S; Pastoors J; Deitert A; Götzen T; Hartmann L; Schröder E; Yordanov S; Büchs J
    J Biol Eng; 2022 Nov; 16(1):31. PubMed ID: 36414992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined evolutionary and metabolic engineering improve 2-keto-L-gulonic acid production in Gluconobacter oxydans WSH-004.
    Li D; Liu L; Qin Z; Yu S; Zhou J
    Bioresour Technol; 2022 Jun; 354():127107. PubMed ID: 35381333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient aerobic fermentation of gluconic acid by high tension oxygen supply strategy with reusable Gluconobacter oxydans HG19 cells.
    Lian Z; Dai L; Zhang R; Liu Y; Zhou X; Xu Y
    Bioprocess Biosyst Eng; 2022 Nov; 45(11):1849-1855. PubMed ID: 36149483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of the alternative sweetener 5-ketofructose from sucrose by fructose dehydrogenase and invertase producing Gluconobacter strains.
    Hoffmann JJ; Hövels M; Kosciow K; Deppenmeier U
    J Biotechnol; 2020 Jan; 307():164-174. PubMed ID: 31704125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Optimization of the fermentation conditions for 5-keto-D-gluconic acid production].
    Li B; Pan H; Sun W; Cheng Y; Xie Z; Zhang J
    Sheng Wu Gong Cheng Xue Bao; 2014 Sep; 30(9):1486-90. PubMed ID: 25720164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gluconobacter oxydans NAD-dependent, D-fructose reducing, polyol dehydrogenases activity: screening, medium optimisation and application for enzymatic polyol production.
    Parmentier S; Beauprez J; Arnaut F; Soetaert W; Vandamme EJ
    Biotechnol Lett; 2005 Mar; 27(5):305-11. PubMed ID: 15834790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of pyrroloquinoline quinone-dependent d-sorbitol dehydrogenase activity from Gluconobacter oxydans via expression of Vitreoscilla hemoglobin and regulation of dissolved oxygen tension for the biosynthesis of 6-(N-hydroxyethyl)-amino-6-deoxy-α-l-sorbofuranose.
    Liu D; Ke X; Hu ZC; Zheng YG
    J Biosci Bioeng; 2021 May; 131(5):518-524. PubMed ID: 33487552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of mGDH in Gluconobacter oxydans to improve D-xylonic acid production from corn stover hydrolysate.
    Mao X; Zhang B; Zhao C; Lin J; Wei D
    Microb Cell Fact; 2022 Mar; 21(1):35. PubMed ID: 35264166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of 1,3-dihydroxyacetone production by a UV-induced mutant of Gluconobacter oxydans with DO control strategy.
    Hu ZC; Zheng YG
    Appl Biochem Biotechnol; 2011 Nov; 165(5-6):1152-60. PubMed ID: 21833510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous co-production of biomass and bio-oxidized metabolite (sorbose) using Gluconobacter oxydans in a high-oxygen tension bioreactor.
    Zhou X; Hua X; Zhou X; Xu Y; Zhang W
    Bioresour Technol; 2019 Apr; 277():221-224. PubMed ID: 30658939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High cell density fermentation of Gluconobacter oxydans DSM 2003 for glycolic acid production.
    Wei G; Yang X; Gan T; Zhou W; Lin J; Wei D
    J Ind Microbiol Biotechnol; 2009 Aug; 36(8):1029-34. PubMed ID: 19434434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.