These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36496657)

  • 1. Identification and Evolution of a Natural Tetr Protein Based on Molecular Docking and Development of a Fluorescence Polari-Zation Assay for Multi-Detection of 10 Tetracyclines in Milk.
    Xia W; Liu J; Wang J
    Foods; 2022 Nov; 11(23):. PubMed ID: 36496657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A receptor-based chemiluminescence enzyme linked immunosorbent assay for determination of tetracyclines in milk.
    Wang G; Zhang HC; Liu J; Wang JP
    Anal Biochem; 2019 Jan; 564-565():40-46. PubMed ID: 30339811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of a natural dihydropteroate synthase and development of a signal amplified fluorescence method for detection of 44 sulfonamides in milk.
    He T; Liu J; Wang JP
    Anal Chim Acta; 2022 Nov; 1234():340481. PubMed ID: 36328719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Teaching TetR to recognize a new inducer.
    Scholz O; Köstner M; Reich M; Gastiger S; Hillen W
    J Mol Biol; 2003 May; 329(2):217-27. PubMed ID: 12758071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a Dihydropteroate Synthase-Based Fluorescence Polarization Assay for Detection of Sulfonamides and Studying Its Recognition Mechanism.
    He T; Liu J; Wang JP
    J Agric Food Chem; 2021 Nov; 69(46):13953-13963. PubMed ID: 34783550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual mutation and directional evolution of anti-amoxicillin ScFv antibody for immunoassay of penicillins in milk.
    He X; Duan CF; Qi YH; Dong J; Wang GN; Zhao GX; Wang JP; Liu J
    Anal Biochem; 2017 Jan; 517():9-17. PubMed ID: 27780696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of Tet repressor induction by tetracyclines: length compensates for sequence in the alpha8-alpha9 loop.
    Scholz O; Kintrup M; Reich M; Hillen W
    J Mol Biol; 2001 Jul; 310(5):979-86. PubMed ID: 11502007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production and Directional Evolution of Antisarafloxacin ScFv Antibody for Immunoassay of Fluoroquinolones in Milk.
    Wang JP; Dong J; Duan CF; Zhang HC; He X; Wang GN; Zhao GX; Liu J
    J Agric Food Chem; 2016 Oct; 64(42):7957-7965. PubMed ID: 27718569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Planar chromatography mediated screening of tetracycline and fluoroquinolone antibiotics in milk by fluorescence and mass selective detection.
    Chen Y; Schwack W
    J Chromatogr A; 2013 Oct; 1312():143-51. PubMed ID: 24034976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitive spectrofluorimetric determination of tetracycline residues in bovine milk.
    Croubels S; Van Peteghem C; Baeyens W
    Analyst; 1994 Dec; 119(12):2713-6. PubMed ID: 7879882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel bioassay using Bacillus megaterium to detect tetracycline in milk.
    Tumini M; Nagel OG; Molina P; Althaus RL
    Rev Argent Microbiol; 2016; 48(2):143-6. PubMed ID: 27131738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing of raw milk for tetracycline residues.
    Nouws JF; Loeffen G; Schouten J; Van Egmond H; Keukens H; Stegeman H
    J Dairy Sci; 1998 Sep; 81(9):2341-5. PubMed ID: 9785224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of the BetaStar
    Ankrapp D; Schaus B; Clements L; Klein F; Rice J; Rejman J; Boison J; Kijak P; Shelver W
    J AOAC Int; 2018 Nov; 101(6):1794-1805. PubMed ID: 29743134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous determination of multiple tetracycline residues in milk using metal chelate affinity chromatography.
    Carson MC
    J AOAC Int; 1993; 76(2):329-34. PubMed ID: 8471858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tet repressor-tetracycline interaction.
    Kaszycki P; Guz A; Drwiega M; Wasylewski Z
    J Protein Chem; 1996 Oct; 15(7):607-19. PubMed ID: 8968952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene regulation by tetracyclines. Constraints of resistance regulation in bacteria shape TetR for application in eukaryotes.
    Berens C; Hillen W
    Eur J Biochem; 2003 Aug; 270(15):3109-21. PubMed ID: 12869186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of Tetracyclines to
    Sumyk M; Himpich S; Foong WE; Herrmann A; Pos KM; Tam HK
    Front Microbiol; 2021; 12():711158. PubMed ID: 34349752
    [No Abstract]   [Full Text] [Related]  

  • 18. Diarylpropane-1,3-dione derivatives as TetR-inducing tetracycline mimetics: Synthesis and biological investigations.
    Kormann C; Pimenta I; Löber S; Wimmer C; Lanig H; Clark T; Hillen W; Gmeiner P
    Chembiochem; 2009 Dec; 10(18):2924-33. PubMed ID: 19885899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A group-specific microbiological test for the detection of tetracycline residues in raw milk.
    Kurittu J; Lönnberg S; Virta M; Karp M
    J Agric Food Chem; 2000 Aug; 48(8):3372-7. PubMed ID: 10956118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tet repressor residues indirectly recognizing anhydrotetracycline.
    Schubert P; Pfleiderer K; Hillen W
    Eur J Biochem; 2004 Jun; 271(11):2144-52. PubMed ID: 15153105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.