BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 36497080)

  • 21. VNN1 contributes to the acute kidney injury-chronic kidney disease transition by promoting cellular senescence via affecting RB1 expression.
    Chen J; Lu H; Wang X; Yang J; Luo J; Wang L; Yi X; He Y; Chen K
    FASEB J; 2022 Sep; 36(9):e22472. PubMed ID: 35959877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Urinary angiotensinogen predicts progressive chronic kidney disease after an episode of experimental acute kidney injury.
    Cui S; Wu L; Feng X; Su H; Zhou Z; Luo W; Su C; Li Y; Shi M; Yang Z; Cao W
    Clin Sci (Lond); 2018 Oct; 132(19):2121-2133. PubMed ID: 30224346
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hypoxic mesenchymal stem cells ameliorate acute kidney ischemia-reperfusion injury via enhancing renal tubular autophagy.
    Tseng WC; Lee PY; Tsai MT; Chang FP; Chen NJ; Chien CT; Hung SC; Tarng DC
    Stem Cell Res Ther; 2021 Jun; 12(1):367. PubMed ID: 34183058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bidirectional relationships between acute kidney injury and chronic kidney disease.
    Pannu N
    Curr Opin Nephrol Hypertens; 2013 May; 22(3):351-6. PubMed ID: 23508059
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of NAD+ boosting on kidney ischemia-reperfusion injury.
    Morevati M; Egstrand S; Nordholm A; Mace ML; Andersen CB; Salmani R; Olgaard K; Lewin E
    PLoS One; 2021; 16(6):e0252554. PubMed ID: 34061900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrial transplantation ameliorates ischemia/reperfusion-induced kidney injury in rat.
    Jabbari H; Roushandeh AM; Rostami MK; Razavi-Toosi MT; Shokrgozar MA; Jahanian-Najafabadi A; Kuwahara Y; Roudkenar MH
    Biochim Biophys Acta Mol Basis Dis; 2020 Aug; 1866(8):165809. PubMed ID: 32353613
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Current understanding of the administration of mesenchymal stem cells in acute kidney injury to chronic kidney disease transition: a review with a focus on preclinical models.
    Zhao L; Han F; Wang J; Chen J
    Stem Cell Res Ther; 2019 Dec; 10(1):385. PubMed ID: 31843011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chronic kidney disease following acute kidney injury-risk and outcomes.
    Leung KC; Tonelli M; James MT
    Nat Rev Nephrol; 2013 Feb; 9(2):77-85. PubMed ID: 23247572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Role of Mitochondria in Acute Kidney Injury and Chronic Kidney Disease and Its Therapeutic Potential.
    Zhang X; Agborbesong E; Li X
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-dose hydralazine prevents fibrosis in a murine model of acute kidney injury-to-chronic kidney disease progression.
    Tampe B; Steinle U; Tampe D; Carstens JL; Korsten P; Zeisberg EM; Müller GA; Kalluri R; Zeisberg M
    Kidney Int; 2017 Jan; 91(1):157-176. PubMed ID: 27692563
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recombinant α-Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy.
    Hu MC; Shi M; Gillings N; Flores B; Takahashi M; Kuro-O M; Moe OW
    Kidney Int; 2017 May; 91(5):1104-1114. PubMed ID: 28131398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Murine models of renal ischemia reperfusion injury: An opportunity for refinement using noninvasive monitoring methods.
    Harwood R; Bridge J; Ressel L; Scarfe L; Sharkey J; Czanner G; Kalra PA; Odudu A; Kenny S; Wilm B; Murray P
    Physiol Rep; 2022 Mar; 10(5):e15211. PubMed ID: 35266337
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insights into the Mechanisms of the Acute Kidney Injury-to-Chronic Kidney Disease Continuum.
    Takaori K; Yanagita M
    Nephron; 2016; 134(3):172-176. PubMed ID: 27398799
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Who regenerates the kidney tubule?
    Kramann R; Kusaba T; Humphreys BD
    Nephrol Dial Transplant; 2015 Jun; 30(6):903-10. PubMed ID: 25155054
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dialysis Requirement and Long-Term Major Adverse Cardiovascular Events in Patients with Chronic Kidney Disease and Superimposed Acute Kidney Injury.
    Omotoso BA; Turgut F; Abdel-Rahman EM; Xin W; Ma JZ; Scully KW; Arogundade FA; Balogun RA
    Nephron; 2017; 136(2):95-102. PubMed ID: 28249270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pathophysiology of unilateral ischemia-reperfusion injury: importance of renal counterbalance and implications for the AKI-CKD transition.
    Polichnowski AJ; Griffin KA; Licea-Vargas H; Lan R; Picken MM; Long J; Williamson GA; Rosenberger C; Mathia S; Venkatachalam MA; Bidani AK
    Am J Physiol Renal Physiol; 2020 May; 318(5):F1086-F1099. PubMed ID: 32174143
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gremlin1 and TGF-β1 protect kidney tubular epithelial cells from ischemia-reperfusion injury through different pathways.
    Gao X; Han L; Yao X; Ma L
    Int Urol Nephrol; 2022 Jun; 54(6):1311-1321. PubMed ID: 34633599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acute kidney injury: gateway to chronic kidney disease.
    Heung M; Chawla LS
    Nephron Clin Pract; 2014; 127(1-4):30-4. PubMed ID: 25343817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Urine Macrophages Polarization Predicts Renal Function Recovery after Nephron-Sparing Surgery in Patients with Renal Cell Carcinoma.
    Dai X; Liu F; Zhang L; Duan L; Huang Y; Qian S
    Urol Int; 2022; 106(11):1177-1184. PubMed ID: 35944509
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondrial dysfunction and the AKI-to-CKD transition.
    Jiang M; Bai M; Lei J; Xie Y; Xu S; Jia Z; Zhang A
    Am J Physiol Renal Physiol; 2020 Dec; 319(6):F1105-F1116. PubMed ID: 33073587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.